Model Reduction for Multi-Converter Network Interaction Assessment Considering Impedance Changes
Abstract
1. Introduction
- Introducing a refined impedance-based model reduction approach that simplifies complex converter models while accurately preserving essential dynamic characteristics necessary for reliable converter–grid interaction analysis.
- Conducting a detailed comparison of impedance reduction techniques to assess the influence of remote converters on local converter behaviours, examining scenarios involving both strong and weak grids. This comparison utilises simplified and detailed models and establishes a practical accuracy index to quantify model discrepancies.
- Establishing a comprehensive framework for comparing impedance reduction methods, clearly quantifying how remote converter interactions impact local converters under varied grid conditions. This evaluation employs both detailed and simplified models, providing robust accuracy metrics.
- The method enables significant improvements in simulation speed, making it possible to efficiently analyse large-scale power systems with many converters using offline tools, overcoming the time and computational barriers of full-scale simulations.
- Achieving significant improvements in simulation speed, thereby facilitating efficient offline analysis of large-scale, converter-rich power systems, overcoming the typical computational limitations of detailed system simulations.
- Developing and rigorously validating advanced error-compensation strategies to effectively minimise magnitude and phase differences between simplified and detailed models. Additionally, quantitative accuracy indices are introduced to systematically evaluate simplified model performance across diverse control strategies and operational scenarios.
2. Simplified Analysis of Interactions in a Multi-Converter System
2.1. Dynamic Modelling of LCL Filters with Robust Current Control Techniques
2.2. Inner Current Loop Simplification
3. Impedance Changes in Simplified and Detailed Model Simulations
3.1. Impedance Simulation Results Under Coupling One
3.2. Impedance Simulation Results Under Coupling Two
4. Simulation Results for Impedance Error Quantification
4.1. Under Coupling One Analysis
4.2. Under Coupling Two Analysis
5. Error-Minimised Lead—Lag Compensation for High-Fidelity Converter Stability Analysis
6. Stability Assessment of PV/PQ-Controlled Converters Using Impedance-Based Indices
6.1. Analysis of Coupling One
6.2. Analysis of Coupling Two
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Tian, M.; Zhang, H.; Song, J.; Zhang, W. Admittance Modeling and Stability Enhancement of Grid-connected Inverter Considering Frequency Coupling in Weak Grids. Electr. Power Syst. Res. 2022, 209, 108034. [Google Scholar] [CrossRef]
- Vemula, N.K.; Parida, S.K. Enhancement of small signal stability in inverter-dominated microgrid with optimal internal model controller. Int. Trans. Electr. Energy Syst. 2020, 30, 12471. [Google Scholar] [CrossRef]
- Tielens, P.; van Hertem, D. The relevance of inertia in power systems. Renew. Sustain. Energy Rev. 2016, 55, 999–1009. [Google Scholar] [CrossRef]
- Henderson, C.; Egea-Alvarez, A.; Kneuppel, T.; Yang, G.; Xu, L. Grid Strength Impedance Metric: An Alternative to SCR for Evaluating System Strength in Converter Dominated Systems. IEEE Trans. Power Deliv. 2022, 39, 386–396. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Egea-Alvarez, A.; Marshall, B.; Rahman, M.H.; Oluwole, A.D. MMC Impedance Modeling and Interaction of Converters in Close Proximity. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 7223–7236. [Google Scholar] [CrossRef]
- Sun, J.; Mihret, M.; Cespedes, M.; Wong, D.; Kauffman, M. Data Center Power System Stability-Part II: System Modeling and Analysis. CSEE J. Power Energy Syst. 2022, 8, 420–438. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, X.; Liu, Y.; Zhuo, F. Modeling and Stability Issues of Voltage-source Converter-dominated Power Systems: A Review. CSEE J. Power Energy Syst. 2022, 8, 1530–1549. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A.V.; Alhelou, H.H.; Blaabjerg, F. Explicit Impedance Modeling and Shaping of Grid-Connected Converters via an Enhanced PLL for Stabilizing the Weak Grid Connection. IEEE Access 2022, 10, 128874–128889. [Google Scholar] [CrossRef]
- Jiang, S.; Zhu, Y.; Konstantinou, G. Settling-Angle-Based Stability Analysis for Multiple Current-Controlled Converters. IEEE Trans. Power Electron. 2022, 37, 12992–12997. [Google Scholar] [CrossRef]
- He, B.; Chen, W.; Li, X.; Shu, L.; Zou, Z.; Liu, F. Unified Frequency-Domain Small-Signal Stability Analysis for Interconnected Converter Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 532–544. [Google Scholar] [CrossRef]
- Dheer, D.K.; Doolla, S.; Bandyopadhyay, S.; Guerrero, J.M. Effect of placement of droop-based generators in distribution network on small signal stability margin and network loss. Int. J. Electr. Power Energy Syst. 2017, 88, 108–118. [Google Scholar] [CrossRef]
- Amin, M. Small-Signal Stability Characterization of Interaction Phenomena Between hvdc System and Wind Farms. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017. [Google Scholar]
- Aljarrah, R.; Fawaz, B.B.; Salem, Q.; Karimi, M.; Marzooghi, H.; Azizipanah-Abarghooee, R. Issues and Challenges of Grid-Following Converters Interfacing Renewable Energy Sources in Low Inertia Systems: A Review. IEEE Access 2024, 12, 5534–5561. [Google Scholar] [CrossRef]
- Yuan, H.; Hao, Y.; Xin, H.; Huang, L.; Zhou, Y.; Wang, X.; Chen, C.; Lu, G.; Qu, L.; Wu, D. Placing Storage Energies for Enhancing Small-Signal Stability of Converter-Based-Renewable Systems. IEEE Trans. Ind. Appl. 2025, 61, 5684–5698. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F.; Loh, P.C. An impedance-based stability analysis method for paralleled voltage source converters. In Proceedings of the 2014 International Power Electronics Conference, IPEC-Hiroshima-ECCE Asia, Hiroshima, Japan, 18–21 May 2014; pp. 1529–1535. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, X. Impedance-Based Stability Analysis for Interconnected Converter Systems with Open-Loop RHP Poles. IEEE Trans. Power Electron. 2020, 35, 4388–4397. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Huang, Y.; He, G.; Liu, C.; Wang, W. Dynamic Interaction and Stability Analysis of Grid-following Converter Integrated Into Weak Grid. CSEE J. Power Energy Syst. 2025, 11, 552–566. [Google Scholar] [CrossRef]
- Cao, W.; Liu, K.; Wang, S.; Kang, H.; Fan, D.; Zhao, J. Harmonic stability analysis for multi-parallel inverter-based grid-connected renewable power system using global admittance. Energies 2019, 12, 2687. [Google Scholar] [CrossRef]
- Mugambi, G.R.; Darii, N.; Khazraj, H.; Romano, O.S.; Raducu, A.G.; Sharma, R.; Cutululis, N.A. Methodologies for offshore wind power plants stability analysis. arXiv 2024, 10, 13521. [Google Scholar] [CrossRef]
- MartÃ, J.; Aã, S.; Chaques-Herraiz, G.; Bernal-Perez, S.; Blasco-Gimenez, R. Model Aggregation Of Large Wind Farms For Dynamic Studies. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 316–321. [Google Scholar]
- Gebremedhin, T.; Xu, L.; Chen, Y.; Chen, D. Assessment of Interactions of Multiple Converters and Network Considering Impedance Change. In Proceedings of the 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), Dubrovnik, Croatia, 14–17 October 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, L.; Xin, H.; Huang, L.; Yuan, H.; Ju, P.; Wu, D. Symmetric Admittance Modeling for Stability Analysis of Grid-Connected Converters. IEEE Trans. Energy Convers. 2020, 35, 434–444. [Google Scholar] [CrossRef]
- Lin, G.; Liu, J.; Rehtanz, C.; Li, Y.; Wang, P.; Zuo, W. A Comprehensive Stability Assessment System for EV DC Charging Station Based on Multitimescale Impedance Model. IEEE Trans. Transp. Electrif. 2024, 10, 938–961. [Google Scholar] [CrossRef]
- Cao, W.; Ma, Y.; Wang, F. Sequence-Impedance-Based Harmonic Stability Analysis and Controller Parameter Design of Three-Phase Inverter-Based Multibus AC Power Systems. IEEE Trans. Power Electron. 2017, 32, 7674–7693. [Google Scholar] [CrossRef]
- Grdenic, G.; Garcia, F.J.C.; Campos, N.D.M.D.; Villella, F.; Beerten, J. Model Order Reduction of Voltage Source Converters Based on the Ac Side Admittance Assessment: From EMT to RMS. IEEE Trans. Power Deliv. 2023, 38, 56–67. [Google Scholar] [CrossRef]
- Nikolakakos, I.P.; Zeineldin, H.H.; El-Moursi, M.S.; Kirtley, J.L. Reduced-Order model for Inter-Inverter oscillations in islanded Droop-Controlled microgrids. IEEE Trans. Smart Grid 2018, 9, 4953–4963. [Google Scholar] [CrossRef]
- Vorobev, P.; Huang, P.H.; Hosani, M.A.; Kirtley, J.L.; Turitsyn, K. High-fidelity model order reduction for microgrids stability assessment. IEEE Trans. Power Syst. 2018, 33, 874–887. [Google Scholar] [CrossRef]
- Yu, H.; Su, J.; Wang, H.; Wang, Y.; Shi, Y. Modelling method and applicability analysis of a reduced-order inverter model for microgrid applications. IET Power Electron. 2020, 13, 2481–2491. [Google Scholar] [CrossRef]
- Gu, Y.; Bottrell, N.; Green, T.C. Reduced-Order Models for Representing Converters in Power System Studies. IEEE Trans. Power Electron. 2018, 33, 3644–3654. [Google Scholar] [CrossRef]
- Manrique MacHado, S.D.J.M.; da Silva, S.A.O.; Monteiro, J.R.B.D.A.; de Oliveira, A.A. Network Modeling Influence on Small-Signal Reduced-Order Models of Inverter-Based AC Microgrids Considering Virtual Impedance. IEEE Trans. Smart Grid 2021, 12, 79–92. [Google Scholar] [CrossRef]
- Taul, M.G.; Wang, X.; Davari, P.; Blaabjerg, F. Influence of phase-locked loop aggregation on the dynamic aggregation of wind farm strings with heterogeneous parameters. IET Energy Syst. Integr. 2021, 3, 99–108. [Google Scholar] [CrossRef]
- Zou, Z.; Xu, R.; Tang, J.; Chen, W.; Wang, Z. Reduced-Order Symbolic Admittance Model and Stability Analysis of Grid-Connected Converters. IEEE Trans. Power Deliv. 2024, 39, 1271–1282. [Google Scholar] [CrossRef]
- Taul, M.G.; Wang, X.; Davari, P.; Blaabjerg, F. Reduced-order and aggregated modeling of large-signal synchronization stability for multiconverter systems. IEEE J. Emerg. Sel. Top. Power Electron 2021, 9, 3150–3165. [Google Scholar] [CrossRef]
- Safavizadeh, A.; Vahabzadeh, T.; Ebrahimi, S.; Jatskevich, J. Admittance-Based Aggregated Modeling of ConverterInterfaced Resources with Heterogeneous Parameters for Transient Analysis of Multi-Converter Systems. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 6, 295–307. [Google Scholar] [CrossRef]
- Niemann, J.H.; Klus, S.; Schutte, C. Data-driven model reduction of agent-based systems using the Koopman generator. PLoS ONE 2021, 16, 7718. [Google Scholar] [CrossRef]
- Gebremedhin, T.; Chen, Y.; Xu, L.; Chen, D. Interactions and stability analysis of grid-forming and grid-following converters in close proximity: An impedance-based approach. In Proceedings of the IET Conference Proceedings CP902, Stevenage, UK, 3–6 December 2024; Volume 2024, pp. 263–269. [Google Scholar] [CrossRef]
- Chen, Y. Small Signal Impedance Modelling and Stability Assessment of HVDC Systems. Doctoral Thesis, University of Strathclyde, Glasgow, UK, 2020. [Google Scholar] [CrossRef]
- Rong, Q.; Hu, P.; Wang, L.; Li, Y.; Yu, Y.; Wang, D.; Cao, Y. Asymmetric Sampling Disturbance-Based Universal Impedance Measurement Method for Converters. IEEE Trans. Power Electron. 2024, 39, 15457–15461. [Google Scholar] [CrossRef]
- Smyth Gordon, K. Numerical integration. In Encyclopedia of Biostatistics; John Wiley & Sons: Hoboken, NJ, USA, 1998; pp. 3088–3095. [Google Scholar]
- Pena-Alzola, R.; Liserre, M.; Blaabjerg, F.; Sebastian, R.; Dannehl, J.; Fuchs, F.W. Systematic design of the lead-lag network method for active damping in lcl-filter based three phase converterss. IEEE Trans. Ind. Inform. 2014, 10, 43–52. [Google Scholar] [CrossRef]
- Aurela, A.W. The Charge Excess and Momentum Spectrum of Cosmic Ray Muons in the Vertical Direction. Doctoral Dissertation, Durham University, Durham, UK, 1965. Available online: http://etheses.dur.ac.uk/10511/ (accessed on 16 August 2025).
- Chen, S.; Wang, Y.; Tian, Z.; Xiao, X.; Xie, X.; Gomis-Bellmunt, O. Understanding a Type of Forced Oscillation in Grid-Forming and Grid-Following Inverter Connected Systems. IEEE Trans. Power Electron. 2025, 40, 11628–11640. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
ωn | 2 × π × 60 |
Current loop PI gains: Kpic, Kic | Lc × ωn × 2, Lc × ωn2 |
PLL PI gains: Kppll, Kippll | 2 × π × 60, (2 × π × 60)2 |
AC voltage controller PI gains: Kp; Ku | 1.2, 6 and 1.5, 7.5 pu |
Lc and Rc | 0.1 and 0.01 pu |
Parameter | Coupling One | Coupling Two |
---|---|---|
L1 | 0.1 pu | 0.3 pu |
Rg | 0.0167 | 0.0167 |
Rg1 | 0.0167 | 0.0167 |
Lg | 0.2 pu | 0.36 pu |
Lg1 | 0.22 pu | 0.38 pu |
Lcg1 | 0.16 pu | 0.25 pu |
Lcg2 | 0.18 pu | 0.26 pu |
Rcg1 | 0.0167 pu | 0.0167 pu |
Rcg2 | 0.0167 pu | 0.0167 pu |
SCR | 3.25 | 1.92 |
Time Delay Td1 | Coupling One PV Control | |||||||
---|---|---|---|---|---|---|---|---|
Impedance Error Index | IR Error Index | EIR Error Index | ||||||
Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | |
0.05 ms | 0.16 | 2.84 | 0.0966 | 1.3177 | 0.1200 | 1.6628 | 0.0063 | 0.1249 |
0.1 ms | 0.16 | 2.51 | 0.0950 | 1.3087 | 0.1184 | 1.6411 | 0.0070 | 0.1529 |
0.2 ms | 0.16 | 2.03 | 0.0940 | 1.2860 | 0.1152 | 1.5998 | 0.0086 | 0.2057 |
0.3 ms | 0.17 | 1.83 | 0.0926 | 1.2619 | 0.1121 | 1.5616 | 0.0103 | 0.2547 |
1 ms | 0.23 | 2.96 | 0.1030 | 1.3706 | 0.1200 | 1.6995 | 0.0186 | 0.4789 |
Time Delay Td1 | Coupling One PQ Control | |||||||
---|---|---|---|---|---|---|---|---|
Impedance Error Index | IR Error Index | EIR Error Index | ||||||
Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | |
0.05 ms | 0.15 | 2.18 | 0.0754 | 0.9950 | 0.1002 | 1.5157 | 0.0079 | 0.1502 |
0.1 ms | 0.15 | 2.02 | 0.0764 | 1.0055 | 0.1011 | 1.5279 | 0.0086 | 0.1788 |
0.2 ms | 0.16 | 1.83 | 0.0786 | 1.036 | 0.1030 | 1.5509 | 0.0101 | 0.2325 |
0.3 ms | 0.17 | 1.80 | 0.088 | 1.0625 | 0.1047 | 1.5724 | 0.0117 | 0.2815 |
1 ms | 0.23 | 2.34 | 0.0956 | 1.2941 | 0.1147 | 1.6823 | 0.0205 | 0.5201 |
Time Delay Td1 | Coupling Two PV Control | |||||||
---|---|---|---|---|---|---|---|---|
Impedance Error Index | IR Error Index | EIR Error Index | ||||||
Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | |
0.05 ms | 0.16 | 2.84 | 0.2232 | 3.6314 | 0.2796 | 4.7176 | 0.0063 | 0.0876 |
0.1 ms | 0.16 | 2.51 | 0.2168 | 3.5517 | 0.2695 | 4.5619 | 0.0071 | 0.1020 |
0.2 ms | 0.16 | 2.03 | 0.2064 | 3.4097 | 0.2529 | 4.2919 | 0.0088 | 0.1494 |
0.3 ms | 0.17 | 1.83 | 0.1987 | 3.288 | 0.2404 | 4.0684 | 0.0105 | 0.2 |
1 ms | 0.23 | 2.96 | 0.185 | 2.8605 | 0.2123 | 3.3405 | 0.0214 | 0.4673 |
Time Delay Td1 | Coupling Two PQ Control | |||||||
---|---|---|---|---|---|---|---|---|
Impedance Error Index | IR Error Index | EIR Error Index | ||||||
Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | Magnitude | Phase | |
0.05 ms | 0.15 | 2.18 | 0.1486 | 2.6892 | 0.2172 | 3.9131 | 0.0078 | 0.1065 |
0.1 ms | 0.15 | 2.02 | 0.1518 | 2.7259 | 0.2214 | 3.9844 | 0.0085 | 0.1166 |
0.2 ms | 0.16 | 1.83 | 0.1663 | 2.8782 | 0.2448 | 4.2779 | 0.0103 | 0.1313 |
0.3 ms | 0.17 | 1.80 | 0.1725 | 2.9462 | 0.2522 | 4.3935 | 0.0101 | 0.1792 |
1 ms | 0.23 | 2.34 | 0.2159 | 3.4393 | 0.29 | 5 | 0.0207 | 0.4363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremedhin, T.B. Model Reduction for Multi-Converter Network Interaction Assessment Considering Impedance Changes. Electronics 2025, 14, 3285. https://doi.org/10.3390/electronics14163285
Gebremedhin TB. Model Reduction for Multi-Converter Network Interaction Assessment Considering Impedance Changes. Electronics. 2025; 14(16):3285. https://doi.org/10.3390/electronics14163285
Chicago/Turabian StyleGebremedhin, Tesfu Berhane. 2025. "Model Reduction for Multi-Converter Network Interaction Assessment Considering Impedance Changes" Electronics 14, no. 16: 3285. https://doi.org/10.3390/electronics14163285
APA StyleGebremedhin, T. B. (2025). Model Reduction for Multi-Converter Network Interaction Assessment Considering Impedance Changes. Electronics, 14(16), 3285. https://doi.org/10.3390/electronics14163285