Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle
Abstract
1. Introduction
2. Design of the Phased Array
2.1. One-Bit Radiation-Phase Reconfigurable Dipole Antenna
2.2. Structure of the Phased Array and Fixed-Phase Feeding Network
2.3. Array Factor
3. Results
3.1. Simulation Results
3.2. Measurement Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lahiry, A.; Le, K.N.; Bao, V.N.Q.; Tam, V.W.Y. Energy-Efficient Ground Base Station Antenna Array System for Wireless Back-Hauling and Two State Charging of Drone Base Stations. IEEE Internet Things J. 2023, 10, 13798–13813. [Google Scholar] [CrossRef]
- Wei, Z.Q.; Ng, D.W.K.; Yuan, J.H. NOMA for Hybrid mmWave Communication Systems with Beamwidth Control. IEEE J. Sel. Top. Signal Process. 2019, 13, 567–583. [Google Scholar] [CrossRef]
- Liu, N.W.; Zhu, L. Low-Profile Dual-Band Patch Antenna with Improved Bandwidth and Beamwidth by Using Multiresonant Modes. In Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 536–538. [Google Scholar]
- Zhang, J.D.; Zhu, L.; Liu, N.W.; Wu, W. CP patch antenna with controllable polarisation over dual-frequency bands. IET Microw. Antennas Propag. 2017, 11, 224–231. [Google Scholar] [CrossRef]
- Liu, N.W.; Chen, X.P.; Zhu, L.; Chen, X.; Fu, G.; Liu, Y. Low-profile triple-band microstrip antenna via sharing a single multi-mode patch resonator. IET Microw. Antennas Propag. 2019, 13, 1580–1585. [Google Scholar] [CrossRef]
- Ayaz, M.; Irfanullah. A Linear Microstrip Phased Array with Novel Integrated Phase Shifters. In Proceedings of the 20th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Bhurban, Pakistan, 22–25 August 2023; pp. 362–365. [Google Scholar]
- Hu, J.D.; Li, Y.; Zhang, Z.J. A Novel Reconfigurable Miniaturized Phase Shifter for 2-D Beam Steering 2-Bit Array Applications. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 381–384. [Google Scholar] [CrossRef]
- Yang, H.Q.; Wang, Z.X.; Gao, Y.; Dai, J.Y. Low-Cost Phased Array Consisting of a Mixture of Active and Passive Elements. In Proceedings of the 14th International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, China, 12–15 August 2022. [Google Scholar]
- Yin, L.; Yang, P.; Zeng, Q.W.; Zhang, P.; Dong, T.; Hu, J.; Nie, Z.P. Low-Cost, Dual Circularly Polarized 2-bit Phased Array Antenna at X-Band. IEEE Trans. Antennas Propag. 2023, 71, 2790–2795. [Google Scholar] [CrossRef]
- Wang, R.; Wang, B.Z.; Ding, X.; Yang, X.S. Planar Phased Array with Wide-Angle Scanning Performance Based on Image Theory. IEEE Trans. Antennas Propag. 2015, 63, 3908–3917. [Google Scholar] [CrossRef]
- Li, M.; Xiao, S.Q.; Wang, B.Z. Investigation of Using High Impedance Surfaces for Wide-Angle Scanning Arrays. IEEE Trans. Antennas Propag. 2015, 63, 2895–2901. [Google Scholar] [CrossRef]
- Lv, Y.H.; Ding, X.; Wang, B.Z. Asymmetric metasurface antenna with opposite currents for wide beam and low-profile wide-angle scanning phased array. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020. [Google Scholar]
- Yang, G.W.; Li, J.Y.; Wei, D.J.; Zhou, S.G.; Yang, J.J. Broadening the beam-width of microstrip antenna by the induced vertical currents. IET Microw. Antennas Propag. 2018, 12, 190–194. [Google Scholar] [CrossRef]
- Lu, W.J.; Li, X.Q.; Li, Q.; Zhu, L. Generalized design approach to compact wideband multi-resonant patch antennas. Int. J. RF Microw. Comput.-Aided Eng. 2018, 28, 13. [Google Scholar] [CrossRef]
- Xia, L.X.; Liu, N.W.; Zhu, L.; Fu, G. Dual-CP Antenna with Wide-HPBW and Wide-ARBW Performance for Wide-Angle Scanning Phased Array. IEEE Trans. Antennas Propag. 2024, 72, 4583–4588. [Google Scholar] [CrossRef]
- Li, D.F.; Zhong, Y.C.; Liu, Y. Planar Low-Profile 2-D Wide-Angle Scanning Phased Array in X-Band Based on SIW. In Proceedings of the IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 4–7 November 2022. [Google Scholar]
- Xu, J.Q.; Xia, Y.L.; Zhu, Q. A Wide-Angle Scanning Circularly Polarized Concentric Ring Array with Large Element Spacing. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 384–388. [Google Scholar] [CrossRef]
- Tan, Q.Q.; Fan, K.K.; Yu, W.L.; Liu, L.L.; Luo, G.Q. A Dual-Polarized Endfire Antenna with Wideband and Enhanced Isolation for 5G Millimeter-Wave Phased Array. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4513–4517. [Google Scholar] [CrossRef]
- Lin, J.S.; Cao, Y.F.; Che, W.Q.; Xue, Q. Wide-Angle and Wideband Millimeter-Wave Beam-Scanning Array Using Multimode Shorted Patch Antenna Elements for Unmanned Aerial Vehicle Communication. IEEE Trans. Veh. Technol. 2025, 74, 537–545. [Google Scholar] [CrossRef]
- Ding, Y.R.; Cheng, Y.J.; Sun, J.X.; Wang, L.; Li, T.J. Dual-Band Shared-Aperture Two-Dimensional Phased Array Antenna with Wide Bandwidth of 25.0% and 11.4% at Ku- and Ka-Band. IEEE Trans. Antennas Propag. 2022, 70, 7468–7477. [Google Scholar] [CrossRef]
- Milias, C.; Andersen, R.B.; Jorgensen, T.H.; Muhammad, B.; Kristensen, J.T.B.; Mihosvka, A.; Hermansen, D.D.S.; Lazaridis, P.I.; Zaharis, Z.D. Mechanically Controlled, Wide-Angle Scanning, Series-Fed Antenna Array with Low Profile for High-Power Radar Systems. IEEE Trans. Antennas Propag. 2023, 71, 6454–6469. [Google Scholar] [CrossRef]
- Karabey, O.H.; Gaebler, A.; Strunck, S.; Jakoby, R. A 2-D Electronically Steered Phased-Array Antenna With 2 x 2 Elements in LC Display Technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 1297–1306. [Google Scholar] [CrossRef]
- Mehdipour, A.; Sazegar, M.; Stevenson, R. Broadband WAIM Metasurface Structure for Electronically Beam Scanning Holographic Antenna for Ku-Band Satellite Communications. In Proceedings of the USNC-URSI Radio Science Meeting/IEEE International Symposium on Antennas and Propagation (AP-S), Atlanta, GA, USA, 7–12 July 2019; pp. 429–430. [Google Scholar]
- Park, J.; Yoo, Y.; Lee, C.; Yoon, D.K.; Park, S.O. Liquid-Crystal-Based Beam-Steering Guided-Wave Metasurface Antenna at Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4208–4212. [Google Scholar] [CrossRef]
- Liu, J.; Liang, F.; Wang, Y.; Ni, X.; Wang, X.R.; Zhao, D.S.; Wang, B.Z. Circularly Polarized High-Gain K-Band Liquid Crystal Phased Array Antenna. IEEE Trans. Antennas Propag. 2024, 72, 7341–7346. [Google Scholar] [CrossRef]
- Cash, I.; Tong, K.-F.; Al-Armaghany, A. Passive Phase Multiplication as a Means Towards Low-Cost, High-Performance Phased Array Antennas. In Proceedings of the 2024 IEEE International Symposium on Phased Array Systems and Technology (ARRAY), Boston, MA, USA, 15–18 October 2024; pp. 1–6. [Google Scholar]
- Juárez, E.; Mendoza, M.A.P.; Covarrubias, D.H.; Maldonado, A.R.; Sanchez, B.; del Rio, C. An Innovative Way of Using Coherently Radiating Periodic Structures for Phased Arrays with Reduced Number of Phase Shifters. IEEE Trans. Antennas Propag. 2022, 70, 307–316. [Google Scholar] [CrossRef]
- Hou, H.Y.; Cheng, Y.J. Low-Cost Phased Array with Switchable Dual Circular Polarization Based on Subarray. In Proceedings of the 2024 International Symposium on Antennas and Propagation (ISAP), Incheon, Republic of Korea, 5–8 November 2024; pp. 1–2. [Google Scholar]
- Zhong, J.J.; Zhao, Y.R.; Li, Y.; Yan, M.Y.; Peng, Y.J.; Cai, Y.; Cao, Y.J. Synergistic Operation Framework for the Energy Hub Merging Stochastic Distributionally Robust Chance-Constrained Optimization and Stackelberg Game. IEEE Trans. Smart Grid 2025, 16, 1037–1050. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhou, J.; Wang, Z.L.; Pang, C.; Li, Y.Z.; Wang, X.S. Low-Cost Architecture Using Interleaved Thinning for Polarimetric Phased Array. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 980–984. [Google Scholar] [CrossRef]
- Lo, Y.T. A Mathematical Theory of Antenna Arrays with Randomly Spaced Elements. IEEE Trans. Antennas Propag. 1964, 12, 257–268. [Google Scholar] [CrossRef]
- Bazzi, A.; Bomfin, R.; Mezzavilla, M.; Rangan, S.; Rappaport, T.; Chafii, M. Upper mid-band spectrum for 6G: Vision, opportunity and challenges. arXiv 2025, arXiv:2502.17914. [Google Scholar]
- Mailloux, R.J. Phased Array Antenna Handbook; Artech House: Norwood, MA, USA, 2005; ISBN 978-15-8053-689-9. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
3.0 | 0.6 | ||
0.4 | 8.3 | ||
0.2 | 0.7 |
Column | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Phase (degree) | 0/180 | 90/270 | 0/180 | 90/270 | 0/180 | 90/270 | 0/180 | 90/270 |
Component | Insertion Loss (dB) |
---|---|
Power divider | 0.56 |
Directional coupler | 0.23 |
Others | 0.11 |
Total | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Su, H.; Wen, Y.; Ma, X.; Zhao, D. Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle. Electronics 2025, 14, 3111. https://doi.org/10.3390/electronics14153111
Wen H, Su H, Wen Y, Ma X, Zhao D. Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle. Electronics. 2025; 14(15):3111. https://doi.org/10.3390/electronics14153111
Chicago/Turabian StyleWen, Haotian, Hansheng Su, Yan Wen, Xin Ma, and Deshuang Zhao. 2025. "Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle" Electronics 14, no. 15: 3111. https://doi.org/10.3390/electronics14153111
APA StyleWen, H., Su, H., Wen, Y., Ma, X., & Zhao, D. (2025). Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle. Electronics, 14(15), 3111. https://doi.org/10.3390/electronics14153111