Oscillation Mechanism of SRF-PLL in Wind Power Systems Under Voltage Sags and Improper Control Parameters
Abstract
1. Introduction
- SRF-PLL oscillation analysis around stable equilibrium points. This paper demonstrates that the SRF-PLL has distinct qualitative behaviors around stable equilibrium points for different grid voltage amplitudes. In the vicinity of a stable equilibrium point, the SRF-PLL under a normal grid voltage converges directly to that point without oscillations. However, when the grid voltage amplitude drops significantly, the SRF-PLL may exhibit multiple oscillations, leading to an extended transient response.
- SRF-PLL oscillation analysis from a global viewpoint.This paper reveals that the sizes of the convergence regions of SRF-PLL are influenced by the grid voltage amplitude and control parameters. When the grid voltage amplitude and/or control parameters are small, these convergence regions shrink significantly. In this case, a small disturbance, e.g., a small frequency jump, can cause the state of the SRF-PLL to move outside the original convergence region. Consequently, undesirable oscillations and a prolonged transient process may occur, even if the control parameters and have been carefully designed according to the SRF-PLL’s small-signal model.
2. Large-Signal Model of the SRF-PLL
3. Oscillations Mechanism of the SRF-PLL
3.1. SRF-PLL Oscillation Around Stable Equilibrium Points
3.2. Global Oscillation Analysis for the SRF-PLL
4. Experimental Results
4.1. Local Oscillations
4.2. Global Oscillations
5. Conclusions
- (1)
- The SRF-PLL exhibits distinct dynamic behaviors around its stable equilibrium points under different grid voltage amplitudes. Consequently, during grid voltage sags, the SRF-PLL may undergo multiple oscillation modes and experience a prolonged transient response.
- (2)
- From the global viewpoint, the SRF-PLL possesses infinitely many asymmetrical convergence regions. However, their sizes shrink significantly under a low grid voltage amplitude and/or small control parameters, which increases the risk of undesirable oscillations and sluggish dynamics even when parameters are well tuned based on small-signal criteria.
6. Discussion and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SRF-PLL | Synchronous reference frame phase-locked loop |
SOGI-PLL | Second-order generalized integrator-based phase-locked loop |
MAF-PLL | Moving average filter based phase-locked loop |
ESO-PLL | Extended State Observer-Based Phase-Locked Loop |
DSOGI-PLL | Dual Second-Order Generalized Integrator Phase-Locked Loop |
EPLL | Enhanced Phase-Locked Loop |
AI | Artificial intelligence |
PCC | Point of common coupling |
PD | Phase detector |
LF | Loop filter |
VCO | Voltage-controlled oscillator |
PI | Proportional-integral |
DSP | Digital signal processor |
FRT | Fault ride through |
Appendix A. Nomenclature
Symbol | Description | Unit |
Three-phase grid voltage | V | |
V | Amplitude of grid voltage | V |
Grid voltage phase angle | rad | |
Angular frequency | rad/s | |
Initial phase angle of the grid voltage | rad | |
Estimated value of grid voltage phase angle | rad | |
Estimated value of grid angular frequency | rad/s | |
Grid voltage in the reference frame | V | |
Output of the LF in the SRF-PLL | rad/s | |
Nominal grid frequency | rad/s | |
Proportional gain of the loop filter (control parameter) | rad/(V · s) | |
Integral gain of the loop filter (control parameter) | rad/(V · s2) | |
Phase error: | rad | |
Frequency error: | rad/s | |
Auxiliary variable: | rad | |
Auxiliary variable: | rad/s | |
j | Imaginary unit () | – |
Auxiliary variable: | rad | |
Auxiliary variable: | rad/s |
References
- Golestan, S.; Guerrero, J.M.; Vasquez, J.C. Single-phase PLLs: A Review of Recent Advances. IEEE Trans. Power Electron. 2017, 32, 9013–9030. [Google Scholar] [CrossRef]
- Golestan, S.; Guerrero, J.M.; Vasquez, J.C. Three-phase PLLs: A Review of Recent Advances. IEEE Trans. Power Electron. 2017, 32, 1894–1907. [Google Scholar] [CrossRef]
- Bamigbade, A.; Khadkikar, V. Extended state-based OSG configurations for SOGI PLL with an enhanced disturbance rejection capability. IEEE Trans. Ind. Appl. 2022, 58, 7792–7804. [Google Scholar] [CrossRef]
- Golestan, S.; Ramezani, M.; Guerrero, J.M.; Freijedo, F.D.; Monfared, M. Moving average filter based phase-locked loops: Performance analysis and design guidelines. IEEE Trans. Power Electron. 2014, 29, 2750–2763. [Google Scholar] [CrossRef]
- Dai, Z.; Lin, W. Adaptive Estimation of Three-Phase Grid Voltage Parameters under Unbalanced Faults and Harmonic Disturbances. IEEE Trans. Power Electron. 2017, 32, 5613–5627. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Liu, K.; Hu, M.; Wu, Z.; Zhang, C.; Hua, W. A forward compensation method to eliminate DC phase error in SRF-PLL. IEEE Trans. Power Electron. 2022, 37, 6280–6284. [Google Scholar] [CrossRef]
- Golestan, S.; Guerrero, J.M. Conventional Synchronous Reference Frame Phase-Locked Loop is an Adaptive Complex Filter. IEEE Trans. Ind. Electron. 2015, 62, 1679–1682. [Google Scholar] [CrossRef]
- Zhang, P.; Du, W.; Wang, H. Small-signal stability of grid-connected converter system in renewable energy systems with fractional-order synchronous reference frame phase-locked loop. J. Mod. Power Syst. Clean Energy. 2025, 13, 1090–1101. [Google Scholar] [CrossRef]
- Shuai, Z.; Li, Y.; Wu, W.; Tu, C.; Luo, A.; Shen, Z.J. Divided dq Small-Signal Model: A New Perspective for the Stability Analysis of Three-Phase Grid-Tied Inverters. IEEE Trans. Ind. Electron. 2019, 66, 6493–6504. [Google Scholar] [CrossRef]
- Taul, M.G.; Wang, X.; Davari, P.; Blaabjerg, F. An overview of assessment methods for synchronization stability of grid-connected converters under severe symmetrical grid faults. IEEE Trans. Power Electron. 2019, 34, 9655–9670. [Google Scholar] [CrossRef]
- Anju, M.; Shihabudheen, K.V.; Mija, S.J. Enhancing synchronization stability: Adaptive PLL implementation using double internal loop RNN in type-3 wind power systems. Electr. Power Syst. Res. 2025, 247, 111735. [Google Scholar] [CrossRef]
- Sayeh, K.F.; Tamalouzt, S.; Ziane, D.; Bekhiti, A.; Belkhier, Y. Utilizing fuzzy logic control and neural networks based on artificial intelligence techniques to improve power quality in doubly fed induction generator-based wind turbine system. Int. J. Energy Res. 2025, 2025, 5985904. [Google Scholar] [CrossRef]
- Ramana, P.V.; Rosalina, K.M. Optimizing weak grid integrated wind energy systems using ANFIS-SRF controlled DSTATCOM. Sci. Rep. 2025, 15, 13662. [Google Scholar] [CrossRef] [PubMed]
- Ligęza, P. Basic, advanced, and sophisticated approaches to the current and forecast challenges of wind energy. Energies 2021, 14, 8147. [Google Scholar] [CrossRef]
- Wang, X.; Yao, J.; Pei, J.; Sun, P.; Zhang, H.; Liu, R. Analysis and damping control of small-signal oscillations for VSC connected to weak AC grid during LVRT. IEEE Trans. Energy Convers. 2019, 34, 1667–1676. [Google Scholar] [CrossRef]
- Nagam, S.S.; Pal, B.C.; Wu, H.; Blaabjerg, F. Synchronization stability analysis of SRF-PLL and DSOGI-PLL using port-Hamiltonian framework. IEEE Trans. Control Syst. Technol. 2025, 33, 952–962. [Google Scholar] [CrossRef]
- Hu, J.; Fu, L.; Ma, F.; Wang, G.; Liu, C.; Ma, Y. Impact of LVRT control on transient synchronizing stability of PLL-based wind turbine converter connected to high impedance AC grid. IEEE Trans. Power Syst. 2023, 38, 5445–5458. [Google Scholar] [CrossRef]
- Gonzalez-Espin, F.; Figueres, E.; Garcera, G. An Adaptive Synchronous-Reference-Frame Phase-Locked Loop for Power Quality Improvement in a Polluted Utility Grid. IEEE Trans. Ind. Electron. 2012, 59, 2718–2731. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Zheng, Z.; Liu, H.; Xue, Y.; Wan, F. Sensorless Control of PMSM Based on Fifth-Order Generalized Integral Flux Observer and Extended State Observer-Based Phase-Locked Loop. IEEE Trans. Power Electron. 2025, 40, 5080–5093. [Google Scholar] [CrossRef]
- Wang, T.; Yao, W.; Yang, H.; Li, W. Modeling and Stability Analysis of the Three-Phase Grid-Connected Inverter Under DSOGI-PLL Considering Frequency-Adaptive Feedback. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 4638–4651. [Google Scholar] [CrossRef]
- Golestan, S.; Matas, J.; Abusorrah, A.M.; Guerrero, J.M. More-Stable EPLL. IEEE Trans. Power Electron. 2022, 37, 1003–1011. [Google Scholar] [CrossRef]
- Teodorescu, R.; Liserre, M.; RodriGuez, P. Grid Converters for Photovoltaic and Wind Power Systems; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- He, X.; Geng, H.; Xi, J.; Guerrero, J.M. Resynchronization analysis and improvement of grid-connected VSCs during grid faults. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 438–450. [Google Scholar] [CrossRef]
- Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-synchronization stability of converter-based resources—An overview. IEEE Open J. Ind. Appl. 2020, 1, 115–134. [Google Scholar] [CrossRef]
- Dai, Z.; Li, G.; Fan, M.; Huang, J.; Yang, Y.; Hang, W. Global Stability Analysis for Synchronous Reference Frame Phase-Locked Loops. IEEE Trans. Ind. Electron. 2022, 69, 10182–10191. [Google Scholar] [CrossRef]
- Khalil, H.K.; Grizzle, J. Nonlinear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- GB/T 19963.1-2021; Technical Specification for Connecting Wind Farm to Power System—Part 1: On Shore Wind Power. China Standards Press: Beijing, China, 2021.
Cases | Voltage Amplitudes | Control Parameters | With/Without Oscillations | Convergence Time |
---|---|---|---|---|
Case A | p.u. | without oscillations | 140 ms | |
Case B | p.u. | without oscillations | 300 ms | |
Case C | p.u. | with oscillations | 2000 ms |
Cases | Voltage Amplitudes | Control Parameters | With/Without Oscillations | Convergence Time |
---|---|---|---|---|
Case D | p.u. | without oscillations | 300 ms | |
Case E | p.u. | without oscillations | 450 ms | |
Case F | p.u. | without oscillations | 750 ms |
Cases | Voltage Amplitudes | Control Parameters | With/Without Oscillations | Convergence Time | Convergence Region Size |
---|---|---|---|---|---|
Case G | without oscillations | Large | |||
Case H | without oscillations | Medium | |||
Case I | with oscillations | Small |
Cases | Voltage Amplitudes | Control Parameters | With/Without Oscillations | Convergence Time | Convergence Region Size |
---|---|---|---|---|---|
Case J | p.u. | without oscillations | 300 ms | Large | |
Case K | p.u. | without oscillations | 450 ms | Medium | |
Case L | p.u. | with oscillations | 1500 ms | Small |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Dai, Z.; Sun, Q.; Lv, S.; Lu, N.; Ma, J. Oscillation Mechanism of SRF-PLL in Wind Power Systems Under Voltage Sags and Improper Control Parameters. Electronics 2025, 14, 3100. https://doi.org/10.3390/electronics14153100
Wang G, Dai Z, Sun Q, Lv S, Lu N, Ma J. Oscillation Mechanism of SRF-PLL in Wind Power Systems Under Voltage Sags and Improper Control Parameters. Electronics. 2025; 14(15):3100. https://doi.org/10.3390/electronics14153100
Chicago/Turabian StyleWang, Guoqing, Zhiyong Dai, Qitao Sun, Shuaishuai Lv, Nana Lu, and Jinke Ma. 2025. "Oscillation Mechanism of SRF-PLL in Wind Power Systems Under Voltage Sags and Improper Control Parameters" Electronics 14, no. 15: 3100. https://doi.org/10.3390/electronics14153100
APA StyleWang, G., Dai, Z., Sun, Q., Lv, S., Lu, N., & Ma, J. (2025). Oscillation Mechanism of SRF-PLL in Wind Power Systems Under Voltage Sags and Improper Control Parameters. Electronics, 14(15), 3100. https://doi.org/10.3390/electronics14153100