Fixed-Time Bearing-Only Formation Control Without a Global Coordinate Frame
Abstract
1. Introduction
- First, a fixed-time orientation estimation law is developed, laying the groundwork for deeper and more comprehensive investigations.
- Therefore, leveraging the proposed novel orientation observer scheme, a key contribution of this study is the development of a bearing-based formation controller that functions independently of any global reference frame. Comprehensive analyses are provided to demonstrate almost-global stability and ensure convergence within a fixed time for the proposed mechanisms.
- Finally, a collision-free condition for the formation control is derived to avoid collision when only bearing information is available.
2. Preliminaries
2.1. Fixed-Time Stability
- ;
- If the trajectory of system (1) fulfills the condition , with constant , , , and . In this case, the equilibrium point at the origin of system (1) exhibits global fixed-time stability. Furthermore, the settling time is uniformly bounded by the following:
2.2. Graph Theory
2.3. Bearing Rigidity
2.4. Gram–Schmidt Process (GSP)
2.5. Target Formation
- For off-diagonal blocks, if agent i is not connected to agent j, i.e., , then the corresponding block is the zero matrix:
- If agent i and j are connected, i.e., , then the off-diagonal block is provided by the negative projection matrix along the desired bearing :
- For the diagonal blocks, i.e., when , the corresponding block aggregates the contributions from all neighbors of agent i, specifically constituting the summation of the projection matrices over its neighbor set :
- Symmetric positive semi-definiteness.
- Kernel containment: The null space subsumes all vectors formed by global translations of the target configuration and joint rotations of the agent ensemble.
- under generic configurations.
3. Main Results
3.1. Fixed-Time Orientation Estimation Law
- For any two distinct nodes i and j, if there is no edge between them (i.e., ), or if the corresponding orientation matrices are identical (i.e., ), the corresponding entry of the matrix satisfies the following:
- When an edge exists between agents i and j (i.e., ), and their orientation matrices are not equal (i.e., ), the off-diagonal entry is defined by a combination of inverse and direct Frobenius norm terms:
- The diagonal elements of the Laplacian matrix (i.e., when ) are computed as the sum of the corresponding row’s off-diagonal entries, ensuring each row sums to zero:
3.2. Fixed-Time Bearing-Only Formation Control
4. Simulation
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, T.; Xu, Z.; Yang, S.X.; Gadsden, S.A. Formation control of multiple autonomous underwater vehicles: A review. Intell. Robot. 2023, 3, 1–22. [Google Scholar] [CrossRef]
- Oh, K.K.; Park, M.C.; Ahn, H.S. A survey of multi-agent formation control. Automatica 2015, 53, 424–440. [Google Scholar] [CrossRef]
- Oh, K.K.; Ahn, H.S. Distance-based undirected formations of single-integrator and double-integrator modeled agents in n-dimensional space. Int. J. Robust Nonlinear Control 2014, 24, 1809–1820. [Google Scholar] [CrossRef]
- Sun, Z.; Mou, S.; Deghat, M.; Anderson, B.D. Finite time distributed distance-constrained shape stabilization and flocking control for d-dimensional undirected rigid formations. Int. J. Robust Nonlinear Control 2016, 26, 2824–2844. [Google Scholar] [CrossRef]
- Smith, T.K.; Akagi, J.; Droge, G. Model predictive control for formation flying based on D’Amico relative orbital elements. Astrodynamics 2025, 9, 145–163. [Google Scholar] [CrossRef]
- Zhou, H.; Jiao, B.; Dang, Z.; Yuan, J. Parametric formation control of multiple nanosatellites for cooperative observation of China Space Station. Astrodynamics 2024, 8, 77–95. [Google Scholar] [CrossRef]
- Lei, B.; Shi, P.; Xu, Y.; Zhao, Y. Switching LPV control for electromagnetic formation flying on highly elliptical orbit. Astrodynamics 2021, 5, 373–389. [Google Scholar] [CrossRef]
- Tron, R.; Thomas, J.; Loianno, G.; Daniilidis, K.; Kumar, V. A distributed optimization framework for localization and formation control: Applications to vision-based measurements. IEEE Control Syst. Mag. 2016, 36, 22–44. [Google Scholar]
- Mao, G.; Fidan, B.; Anderson, B.D. Wireless sensor network localization techniques. Comput. Netw. 2007, 51, 2529–2553. [Google Scholar] [CrossRef]
- Dong, Y.Y.; Dong, C.X.; Liu, W.; Chen, H.; Zhao, G.Q. 2-D DOA estimation for L-shaped array with array aperture and snapshots extension techniques. IEEE Signal Process. Lett. 2017, 24, 495–499. [Google Scholar] [CrossRef]
- Midhun, E.; Ratnoo, A. Gap Traversal Guidance Using Bearing Information. J. Guid. Control Dyn. 2022, 45, 2360–2368. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Van Vu, D.; Van Pham, T.; Trinh, M.H. Bearing-Constrained Leader-Follower Formation of Single-Integrators with Disturbance Rejection: Adaptive Variable-Structure Approaches. IEEE Trans. Cybern. 2024, 54, 6283–6296. [Google Scholar] [CrossRef]
- Wang, F.; Long, L. Switched-observer-based event-triggered adaptive fuzzy funnel control for switched nonlinear systems. IEEE Trans. Fuzzy Syst. 2021, 30, 1773–1787. [Google Scholar] [CrossRef]
- Basiri, M.; Bishop, A.N.; Jensfelt, P. Distributed control of triangular formations with angle-only constraints. Syst. Control Lett. 2010, 59, 147–154. [Google Scholar] [CrossRef]
- Bishop, A.N. Distributed bearing-only formation control with four agents and a weak control law. In Proceedings of the 2011 9th IEEE International Conference on Control and Automation (ICCA), Santiago, Chile, 19–21 December 2011; pp. 30–35. [Google Scholar]
- Fabris, M.; Fattore, G.; Cenedese, A. Optimal time-invariant distributed formation tracking for second-order multi-agent systems. Eur. J. Control 2024, 77, 100985. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, F.; Peng, K.; Chen, B.M.; Lee, T.H. Finite-time stabilisation of cyclic formations using bearing-only measurements. Int. J. Control 2014, 87, 715–727. [Google Scholar] [CrossRef]
- Li, Z.; Tnunay, H.; Zhao, S.; Meng, W.; Xie, S.Q.; Ding, Z. Bearing-only formation control with prespecified convergence time. IEEE Trans. Cybern. 2020, 52, 620–629. [Google Scholar] [CrossRef]
- Erskine, J.; Briot, S.; Fantoni, I.; Chriette, A. Singularity Analysis of Rigid Directed Bearing Graphs for Quadrotor Formations. IEEE Trans. Robot. 2023, 40, 139–157. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z.; Ding, Z. Bearing-only formation tracking control of multiagent systems. IEEE Trans. Autom. Control 2019, 64, 4541–4554. [Google Scholar] [CrossRef]
- Zhao, S.; Zelazo, D. Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions. Automatica 2016, 69, 334–341. [Google Scholar] [CrossRef]
- Trinh, M.H.; Mukherjee, D.; Zelazo, D.; Ahn, H.S. Planar bearing-only cyclic pursuit for target capture. IFAC-PapersOnLine 2017, 50, 10136–10141. [Google Scholar] [CrossRef]
- Trinh, M.H.; Oh, K.K.; Jeong, K.; Ahn, H.S. Bearing-only control of leader first follower formations. IFAC-PapersOnLine 2016, 49, 7–12. [Google Scholar] [CrossRef]
- Trinh, M.H.; Mukherjee, D.; Zelazo, D.; Ahn, H.S. Formations on directed cycles with bearing-only measurements. Int. J. Robust Nonlinear Control 2018, 28, 1074–1096. [Google Scholar] [CrossRef]
- Schiano, F.; Franchi, A.; Zelazo, D.; Giordano, P.R. A rigidity-based decentralized bearing formation controller for groups of quadrotor UAVs. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 5099–5106. [Google Scholar]
- Zhao, S.; Zelazo, D. Bearing rigidity and almost global bearing-only formation stabilization. IEEE Trans. Autom. Control 2015, 61, 1255–1268. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, D.; Zhang, J. Global Attitude Synchronization for Networked Rigid Bodies Under Directed Topologies. IEEE Trans. Control Netw. Syst. 2022, 10, 1362–1373. [Google Scholar] [CrossRef]
- Wei, J.; Verginis, C.; Wu, J.; Dimarogonas, D.V.; Sandberg, H.; Johansson, K.H. Asymptotic and finite-time almost global attitude tracking: Representations free approach. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; pp. 3126–3131. [Google Scholar]
- Mazare, M.; Asharioun, H.; Davoudi, E.; Mokhtari, M. Distributed finite-time neural network observer-based consensus tracking control of heterogeneous underwater vehicles. Ocean Eng. 2023, 272, 113882. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Y.; Li, D.; Ge, S.S.; How, B.V.E.; Lee, T.H. Synchronized tracking control for dynamic positioning vessel. Int. J. Robust Nonlinear Control 2024, 34, 270–295. [Google Scholar] [CrossRef]
- Lee, B.H.; Ahn, H.S. Distributed estimation for the unknown orientation of the local reference frames in n-dimensional space. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [Google Scholar]
- Van Tran, Q.; Trinh, M.H.; Zelazo, D.; Mukherjee, D.; Ahn, H.S. Finite-time bearing-only formation control via distributed global orientation estimation. IEEE Trans. Control Netw. Syst. 2018, 6, 702–712. [Google Scholar] [CrossRef]
- Li, H.; Zhu, M.; Chu, Z.; Du, H.; Wen, G.; Alotaibi, N.D. Fixed-time synchronization of a class of second-order nonlinear leader-following multi-agent systems. Asian J. Control 2018, 20, 39–48. [Google Scholar] [CrossRef]
- Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2011, 57, 2106–2110. [Google Scholar] [CrossRef]
- Zuo, Z.; Tie, L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 2014, 87, 363–370. [Google Scholar] [CrossRef]
- Li, J.; Fan, Y.; Liu, J. Distributed fixed-time formation tracking control for multiple underactuated USVs with lumped uncertainties and input saturation. ISA Trans. 2024, 154, 186–198. [Google Scholar] [CrossRef]
- Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766. [Google Scholar] [CrossRef]
- Parsegov, S.; Polyakov, A.; Shcherbakov, P. Fixed-time consensus algorithm for multi-agent systems with integrator dynamics. IFAC Proc. Vol. 2013, 46, 110–115. [Google Scholar] [CrossRef]
- Mesbahi, M.; Egerstedt, M. Graph Theoretic Methods in Multiagent Networks; Princeton University Press: Princeton, NJ, USA, 2010; Volume 33. [Google Scholar]
- Zhao, S.; Zelazo, D. Translational and scaling formation maneuver control via a bearing-based approach. IEEE Trans. Control Netw. Syst. 2015, 4, 429–438. [Google Scholar] [CrossRef]
1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Lu, M.; Zhang, B.; Wang, Q. Fixed-Time Bearing-Only Formation Control Without a Global Coordinate Frame. Electronics 2025, 14, 3021. https://doi.org/10.3390/electronics14153021
Huang H, Lu M, Zhang B, Wang Q. Fixed-Time Bearing-Only Formation Control Without a Global Coordinate Frame. Electronics. 2025; 14(15):3021. https://doi.org/10.3390/electronics14153021
Chicago/Turabian StyleHuang, Hanqiao, Mengwen Lu, Bo Zhang, and Qian Wang. 2025. "Fixed-Time Bearing-Only Formation Control Without a Global Coordinate Frame" Electronics 14, no. 15: 3021. https://doi.org/10.3390/electronics14153021
APA StyleHuang, H., Lu, M., Zhang, B., & Wang, Q. (2025). Fixed-Time Bearing-Only Formation Control Without a Global Coordinate Frame. Electronics, 14(15), 3021. https://doi.org/10.3390/electronics14153021