Safety Management Technologies for Wireless Electric Vehicle Charging Systems: A Review
Abstract
:1. Introduction
2. Methodology
3. Risks Associated with WEVC Systems
3.1. Overview of System-Level Risks
3.2. Trend Toward High-Power WEVC
4. Investigation of Coupler-Level Risks
4.1. Electrical Risks
4.2. Thermal Risks
4.3. Magnetic Risks
5. Passive Safety Materials for Coupler
5.1. Insulating Material
5.2. Thermal Dissipation Material
5.3. Shielding Material
6. Active Safety Management Technologies
6.1. Foreign Object Detection
6.2. Live Body Detection
6.3. Misalignment Detection
6.4. Multifunctional Detection
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, D.; Leung, M.-F.; Tang, J.; Wang, Y.; Hu, J.; Wang, S. Generative Self-Supervised Learning for Cyberattack-Resilient EV Charging Demand Forecasting. IEEE Trans. Intell. Transp. Syst. 2025, 1–10. [Google Scholar] [CrossRef]
- Jamil, U.; Alva, R.J.; Ahmed, S.; Jin, Y.-F. Artificial intelligence-driven optimal charging strategy for electric vehicles and impacts on electric power grid. Electronics 2025, 14, 1471. [Google Scholar] [CrossRef]
- Jia, C.; He, H.; Zhou, J.; Li, J.; Wei, Z.; Li, K. A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience. Energy 2023, 282, 128928. [Google Scholar] [CrossRef]
- Zhang, C.; Niu, S.; Jian, L. Vehicle position measurement and misalignment-effect-eliminated metal object detection for wireless EV charging system: A dual-purpose design of sensing coils. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Guangzhou, China, 27–29 October 2020; pp. 591–596. [Google Scholar]
- Phan, D.; Bab-Hadiashar, A.; Fayyazi, M.; Hoseinnezhad, R.; Jazar, R.N.; Khayyam, H. Interval type 2 fuzzy logic control for energy management of hybrid electric autonomous vehicles. IEEE Trans. Intell. Veh. 2021, 6, 210–220. [Google Scholar] [CrossRef]
- Niu, S.; Xu, H.; Sun, Z.; Shao, Z.; Jian, L. The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: Principles, standards and core technologies. Renew. Sustain. Energy Rev. 2019, 114, 109302. [Google Scholar] [CrossRef]
- Niu, S.; Lyu, R.; Lyu, J.; Chau, K.T.; Liu, W.; Jian, L. Optimal resonant condition for maximum output power in tightly coupled WPT systems considering harmonics. IEEE Trans. Power Electron. 2025, 40, 152–156. [Google Scholar] [CrossRef]
- Yang, C.; Song, B.; Xie, Y.; Tang, X. Online Parallel estimation of mechanical parameters for PMSM drives via a network of interconnected extended sliding-mode observers. IEEE Trans. Power Electron. 2021, 36, 11818–11834. [Google Scholar] [CrossRef]
- Alvarez, S. Tesla Robotaxi Cybercab Wireless Charging Speed Teased. Available online: https://www.teslarati.com/tesla-robotaxi-cybercab-wireless-charging-speed-teased/ (accessed on 25 April 2025).
- Li, S.; Xia, K.; Li, T.; Lu, S.; Xia, J.; Liu, Z. A novel comb-shaped coupler for hybrid inductive and capacitive wireless power transfer system. IEEE Trans. Power Electron. 2025, 40, 4787–4792. [Google Scholar] [CrossRef]
- Niu, S.; Zhao, Q.; Chen, H.; Yu, H.; Niu, S.; Jian, L. Underwater wireless charging system of unmanned surface vehicles with high power, large misalignment tolerance and light weight: Analysis, design and optimization. Energies 2022, 15, 9529. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, F.; Liu, H. Indirect control strategy of secondary charging voltage and current and transient analysis of LCC-S WPT system. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2364–2376. [Google Scholar] [CrossRef]
- Niu, S.; Yu, H.; Jian, L. Thermal behavior analysis of wireless electric vehicle charging system under various misalignment conditions. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 607–612. [Google Scholar]
- Yang, C.; Song, B.; Xie, Y.; Lu, S.; Tang, X. Stable simultaneous inertia and disturbance torque identification for SPMSM drive systems subject to mismatched rotor flux linkage. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 2445–2462. [Google Scholar] [CrossRef]
- Kim, S.; Amirpour, M.; Dharmakeerthi, T.; Barsari, V.Z.; Covic, G.; Bickerton, S.; Thrimawithana, D. Thermal Evaluation of an Inductive Power Transfer Pad for Charging Electric Vehicles. IEEE Trans. Ind. Electron. 2022, 69, 314–322. [Google Scholar] [CrossRef]
- Tiemann, M.; Saifo, M.; Clemens, M.; Schmuelling, B. Magnetic and thermal coupled field analysis of wireless charging systems for electric vehicles. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Rasekh, N.; Dabiri, S.; Rasekh, N.; Mirsalim, M.; Bahiraei, M. Thermal analysis and electromagnetic characteristics of three single-sided flux pads for wireless power transfer. J. Clean. Prod. 2020, 243, 118561. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Z.; Lin, Y.; Xiang, L.; Li, X.; Shao, Y.; Tian, J. Metal object detection for electric vehicle inductive power transfer systems based on hyperspectral imaging. Measurement 2021, 168, 108493. [Google Scholar] [CrossRef]
- Pries, J.; Galigekere, V.P.; Onar, O.C.; Su, G.-J.; Wiles, R.; Seiber, L.; Wilkins, J.; Anwar, S.; Zou, S. Coil Power Density Optimization and Trade-off Study for a 100 kW Electric Vehicle IPT Wireless Charging System. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 1196–1201. [Google Scholar]
- Ideanomics. “First Planned Deployment of 500kW Inductive Charger to Power Electric Trucks in Cold Climates,” GlobeNewswire News Room, 16 January 2024. Available online: https://www.globenewswire.com/news-release/2024/01/16/2809713/0/en/First-Planned-Deployment-of-500kW-Inductive-Charger-to-Power-Electric-Trucks-in-Cold-Climates.html (accessed on 25 April 2025).
- Yang, C.; Song, B.; Xie, Y.; Zheng, S.; Tang, X. Adaptive identification of nonlinear friction and load torque for PMSM drives via a parallel-observer-based network with model compensation. IEEE Trans. Power Electron. 2023, 38, 5875–5897. [Google Scholar] [CrossRef]
- Mahesh, A.; Chokkalingam, B.; Mihet-Popa, L. Inductive wireless power transfer charging for electric vehicles–a review. IEEE Access 2021, 9, 137667–137713. [Google Scholar] [CrossRef]
- Amjad, M.; Farooq-i-Azam, M.; Ni, Q.; Dong, M.; Ansari, E.A. Wireless charging systems for electric vehicles. Renew. Sustain. Energy Rev. 2022, 167, 112730. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, F.; Chan, H.K.; Gao, H.O. Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects. Transp. Res. Part E Logist. Transp. Rev. 2022, 163, 102761. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Savio, D.A.; Balaji, C.; Rajamanickam, N.; Kotb, H.; Elrashidi, A.; Nureldeen, W. A comprehensive review on efficiency enhancement of wireless charging system for the electric vehicles applications. IEEE Access 2024, 12, 46967–46994. [Google Scholar] [CrossRef]
- Tenllado, I.C.; Cabrera, A.T.; Lin, Z. Simultaneous wireless power and data transfer for electric vehicle charging: A review. IEEE Trans. Transp. Electrif. 2024, 10, 4542–4570. [Google Scholar] [CrossRef]
- Sagar, A.; Kashyap, A.; Azimi Nasab, M.; Padmanaban, S.; Bertoluzzo, M.; Kumar, A.; Blaabjerg, F. A comprehensive review of the recent development of wireless power transfer technologies for electric vehicle charging systems. IEEE Access 2023, 11, 83703–83751. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Zhao, Q.; Niu, S.; Shao, Z.; Jian, L. Hull-compatible underwater IPT system with enhanced electromagnetic–thermal performance for USVs. Energies 2025, 18, 237. [Google Scholar] [CrossRef]
- Liu, W.; Chau, K.T.; Lee, C.H.T.; Han, W.; Tian, X.; Lam, W.H. Full-range soft-switching pulse frequency modulated wireless power transfer. IEEE Trans. Power Electron. 2020, 35, 6533–6547. [Google Scholar] [CrossRef]
- Zhu, Q.; Han, H.; Su, M.; Hu, A.P. A 3D wireless charging cube with externally enhanced magnetic field for extended range of wireless power transfer. Wirel. Power Transf. 2019, 6, 67–76. [Google Scholar] [CrossRef]
- Jia, C.; Zhou, J.; He, H.; Li, J.; Wei, Z.; Li, K.; Shi, M. A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal-and health-constrained awareness. Energy 2023, 271, 127105. [Google Scholar] [CrossRef]
- Xiong, R.; Yang, R.; Chen, Z.; Shen, W.; Sun, F. Online fault diagnosis of external short circuit for lithium-ion battery pack. IEEE Trans. Ind. Electron. 2020, 67, 1081–1091. [Google Scholar] [CrossRef]
- Filipova-Petrakieva, S.K.; Shopov, Y.M. Overvoltages protection in electrical devices and transient analysis by Duhamel’s principle. In Proceedings of the 2019 11th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 11–14 September 2019; pp. 1–6. [Google Scholar]
- Pozo, N.; Prócel, L.-M.; Trojman, L. All-GaN integrated overcurrent protection circuit using only enhancement-mode p-GaN devices. In Proceedings of the 2024 37th SBC/SBMicro/IEEE Symposium on Integrated Circuits and Systems Design (SBCCI), Joao Pessoa, Brazil, 2–6 September 2024; pp. 1–5. [Google Scholar]
- Zhang, K.; Wang, Z.; Wang, T.; Du, Z.; Xiao, F.; Yang, H.; Tang, A. Optimal connecting nodes planning based on the risk assessment of power systems. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 1796–1800. [Google Scholar]
- Niu, S.; Yu, H.; Niu, S.; Jian, L. Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention. Appl. Energy 2020, 275, 115344. [Google Scholar] [CrossRef]
- Mou, W.; Lu, M. Safety assessment of wireless chargers for electric vehicles considering thermal characteristics. Radiat. Prot. Dosim. 2023, 200, 187–200. [Google Scholar] [CrossRef]
- Aydin, E.; Barua, H.; Aktas, A.; Mohammad, M.; Onar, O.C.; Ozpineci, B. Thermal Analysis of a 100 kW Polyphase Wireless Power Transfer System. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024; pp. 1927–1931. [Google Scholar]
- Jia, C.; He, H.; Zhou, J.; Li, K.; Li, J.; Wei, Z. A performance degradation prediction model for PEMFC based on bi-directional long short-term memory and multi-head self-attention mechanism. Int. J. Hydrogen Energy 2024, 60, 133–146. [Google Scholar] [CrossRef]
- Das, M.; Jeong, S.; Sim, B.; Lee, S.; Hong, S.; Kim, Y.; Kim, J. Study of series-series topology for suppressing electromagnetic interference (EMI) for digital TV wireless power transfer (WPT) systems. In Proceedings of the 2018 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Chandigarh, India, 16–18 December 2018; pp. 1–3. [Google Scholar]
- Okada, R.; Ota, R.; Hoshi, N. Radiated EMI reduction and efficiency improvement in WPT systems with passive auxiliary circuits for soft-switching. In Proceedings of the 2023 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Chiang Mai, Thailand, 28 November–1 December 2023; pp. 1–3. [Google Scholar]
- Rezaei, M.A.; Fathollahi, A.; Akbari, E.; Saki, M.; Khorgami, E.; Teimouri, A.R.; Chronopoulos, A.T.; Mosavi, A. Reliability calculation improvement of electrolytic capacitor banks used in energy storage applications based on internal capacitor faults and degradation. IEEE Access 2024, 12, 13146–13164. [Google Scholar] [CrossRef]
- Cui, S.; Riaz, S.; Wang, K. Study on lifetime decline prediction of Lithium-ion capacitors. Energies 2023, 16, 7557. [Google Scholar] [CrossRef]
- Roy, S.; Hanif, A.; Khan, F. Aging detection and state of health estimation of live power semiconductor devices using SSTDR embedded PWM sequence. IEEE Trans. Power Electron. 2021, 36, 4991–5005. [Google Scholar] [CrossRef]
- Jia, C.; Zhou, J.; He, H.; Li, J.; Wei, Z.; Li, K. Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information. Energy 2024, 290, 130146. [Google Scholar] [CrossRef]
- Shen, H.; Wang, H.; Li, M.; Li, C.; Zhang, Y.; Li, Y.; Yang, X.; Feng, X.; Ouyang, M. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere. Electronics 2023, 12, 1603. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; He, H.; Chau, K. Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control. Energy Convers. Manag. 2024, 321, 119032. [Google Scholar] [CrossRef]
- Jia, C.; He, H.; Zhou, J.; Li, J.; Wei, Z.; Li, K. Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control. Appl. Energy 2024, 355, 122228. [Google Scholar] [CrossRef]
- SAE J2954; Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology. SAE International: Warrendale, PA, USA, 2020.
- GB/T 38775; Electric Vehicle Wireless Power Transfer. Standardization Administration of China—SAC: Beijing, China, 2020.
- IEC 61980; Electric Vehicle Wireless Power Transfer Systems. International Electrotechnical Commission—IEC: Geneva, Switzerland, 2020.
- Yang, C.; Song, B.; Xie, Y.; Lu, S.; Tang, X. Speed-controller-independent mechanical parameter identification in SPMSM drive achieved via signal injection. IEEE Trans. Ind. Electron. 2023, 70, 1282–1297. [Google Scholar] [CrossRef]
- Zhang, B.; Carlson, R.B.; Smart, J.G.; Dufek, E.J.; Liaw, B. Challenges of future high power wireless power transfer for light-duty electric vehicles—Technology and risk management. eTransportation 2019, 2, 100012. [Google Scholar] [CrossRef]
- Rayan, B.A.; Subramaniam, U.; Balamurugan, S. Wireless power transfer in electric vehicles: A review on compensation topologies, coil structures, and safety aspects. Energies 2023, 16, 3084. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A high efficiency 3.3 kW loosely-coupled wireless power transfer system without magnetic material. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 2282–2286. [Google Scholar]
- Miller, J.M.; Daga, A. Elements of wireless power transfer essential to high power charging of heavy duty vehicles. IEEE Trans. Transp. Electrific. 2015, 1, 26–39. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, S.; Peng, F.Z. Design consideration and comparison of wireless power transfer via harmonic current for PHEV and EV wireless charging. IEEE Trans. Power Electron. 2017, 32, 5943–5952. [Google Scholar] [CrossRef]
- Bi, Z.; Kan, T.; Mi, C.C.; Zhang, Y.; Zhao, Z.; Keoleian, G.A. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl. Energy 2016, 179, 413–425. [Google Scholar] [CrossRef]
- Choi, Y.; Kwak, B.; Kim, M. 4kW magnetic resonance wireless power transfer system. In Proceedings of the 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW, Australia, 28 September–1 October 2016; pp. 1–3. [Google Scholar]
- Bojarski, M.; Asa, E.; Colak, K.; Czarkowski, D. A 25 kW industrial prototype wireless electric vehicle charger. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 1756–1761. [Google Scholar]
- Bosshard, R. Multi-Objective Optimization of Inductive Power Transfer Systems for EV Charging. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2015. [Google Scholar]
- Dai, Z.; Wang, J.; Long, M.; Huang, H. A witricity-based high-power device for wireless charging of electric vehicles. Energies 2017, 10, 323. [Google Scholar] [CrossRef]
- Mohamed, A.A.S.; An, S.; Mohammed, O. Coil design optimization of power pad in IPT system for electric vehicle applications. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Kusaka, K.; Kusui, R.; Itoh, J.; Sato, D.; Obayashi, S.; Ishida, M. A 22 kW-85 kHz three-phase wireless power transfer system with 12 coils. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 3340–3347. [Google Scholar]
- Deng, Q.; Sun, P.; Hu, W.; Czarkowski, D.; Kazimierczuk, M.K.; Zhou, H. Modular parallel multi-inverter system for high-power inductive power transfer. IEEE Trans. Power Electron. 2019, 34, 9422–9434. [Google Scholar] [CrossRef]
- Ji, B.; Hata, K.; Imura, T.; Hori, Y.; Shimada, S.; Kawasaki, O. Wireless power transfer system design with power management strategy control for lunar rover. IEEJ J. Ind. Appl. 2020, 9, 392–400. [Google Scholar] [CrossRef]
- Shi, W.; Dong, J.; Soeiro, T.B.; Riekerk, C.; Grazian, F.; Yu, G.; Bauer, P. Design of a highly efficient 20-kW inductive power transfer system with improved misalignment performance. IEEE Trans. Transp. Electrif. 2022, 8, 2384–2399. [Google Scholar] [CrossRef]
- Ramezani, A.; Narimani, M. A modular coil design for high-power wireless EV charging. In Proceedings of the IEEE Annual Conference of the Industrial Electronics Society (IECON), Toronto, ON, Canada, 13–16 October 2021; pp. 1–5. [Google Scholar]
- Ibrahim, A.U.; Zhong, W.; Xu, M.D. A 50-kW three-channel wireless power transfer system with low stray magnetic field. IEEE Trans. Power Electron. 2021, 36, 9941–9954. [Google Scholar] [CrossRef]
- Lawton, P.A.J.; Lin, F.J.; Covic, G.A. Magnetic design considerations for high-power wireless charging systems. IEEE Trans. Power Electron. 2022, 37, 9972–9982. [Google Scholar] [CrossRef]
- Liu, X.; Chen, G.; Su, D.; Wu, X.; Gong, W.; Ren, F. A 100 kW magnetic coupled wireless power transfer system for electrical vehicles. In Proceedings of the 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 14–16 July 2023; pp. 48–52. [Google Scholar]
- Park, J.U.; Oh, J.M.; Bok, Y.H.; Lee, I.O. 22 kW high-efficiency IPT system for wireless charging of electric vehicles. J. Power Electron. 2023, 23, 374–386. [Google Scholar] [CrossRef]
- Subudhi, P.S.; Padmanaban, S.; Blaabjerg, F.; Kothari, D.P. Design and implementation of a PV-fed grid-integrated wireless electric vehicle battery charger present in a residential environment. IEEE J. Emerg. Sel. Topics Ind. Electron. 2023, 4, 78–86. [Google Scholar] [CrossRef]
- Elbracht, L.; Lin, F.J.; Parspour, N.; Covic, G.A.; Patrick, A.J.L. Input voltage range optimization of a high power wireless power transfer system for constant power output. In Proceedings of the 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), Kyoto, Japan, 8–11 May 2024; pp. 582–587. [Google Scholar]
- ORNL. Polyphase Wireless Power Transfer System Achieves 270-Kilowatt Charge, Sets Another World Record for Electric Light-Duty Passenger Vehicles. Available online: https://www.ornl.gov/news/polyphase-wireless-power-transfer-system-achieves-270-kilowatt-charge-sets-another-world (accessed on 25 April 2025).
- Park, C. Electrets: A Remedy for Partial Discharge Caused by Power Electronics Switching. IEEE Trans. Ind. Electron. 2021, 68, 12947–12952. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Z.; Sun, P.; Ai, S.; Zhang, J.; Wang, Y. Electric-Field-Dominated Partial Discharge in Medium Voltage SiC Power Module Packaging: Model, Mechanism, Reshaping, and Assessment. IEEE Trans. Power Electron. 2022, 37, 5422–5432. [Google Scholar] [CrossRef]
- Cavallini, A.; Fabiani, D.; Montanari, G. Power Electronics and Electrical Insulation Systems ߝ Part 1: Phenomenology Overview. IEEE Electr. Insul. Mag. 2010, 26, 7–15. [Google Scholar] [CrossRef]
- Wang, D.; Wei, J.; Feng, H.; Ran, L. A Thermal Black-Box Theory for Scaling Design of Planar Magnetic Coils in Wireless Charging Systems. IEEE Trans. Power Electron. 2024, 39, 8973–8984. [Google Scholar] [CrossRef]
- Kyaw, P.A.; Sullivan, C.R. Analytical Thermal Model for Inductor and Transformer Windings and Litz Wire. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 25–28 June 2018; pp. 1–9. [Google Scholar]
- Kalra, G.R.; Pearce, M.G.S.; Kim, S.; Thrimawithana, D.J.; Covic, G.A. A Power Loss Measurement Technique for Inductive Power Transfer Magnetic Couplers. IEEE J. Emerg. Sel. Top. Ind. Electron. 2020, 1, 113–122. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Niu, S. Novel High-Order-Harmonic Toroidal Winding Design Approach for Double-Sided Vernier Reluctance Linear Machine. IEEE Trans. Ind. Electron. 2023, 70, 9823–9834. [Google Scholar] [CrossRef]
- Bi, Y.; Fu, W.; Niu, S.; Huang, J. Comparative Analysis of Consequent-Pole Flux-Switching Machines with Different Permanent Magnet Arrangements for Outer-Rotor In-Wheel Direct-Drive Applications. Energies 2023, 16, 6650. [Google Scholar] [CrossRef]
- Huang, J.; Fu, W.; Niu, S.; Zhao, X.; Bi, Y.; Qiao, Z. A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines. Energies 2022, 15, 9385. [Google Scholar] [CrossRef]
- Chapman, M.; Kaffenberger, T.; Matveev, A.; Olsen, P.K. Developments Relating to Litz Wire in the Insulation Systems of Generators for Renewable Energies. In Proceedings of the 2011 Electrical Insulation Conference (EIC), Annapolis, MD, USA, 5–8 June 2011; pp. 27–31. [Google Scholar]
- Pokryvailo, A.; Dave, H. Layer Insulation Losses and Life Above Ionization Threshold at High-Frequency and Pulsed Stresses. IEEE Trans. Plasma Sci. 2022, 50, 3351–3360. [Google Scholar] [CrossRef]
- Lyu, J.; Chen, H.C.; Zhang, Y.; Du, Y.; Cheng, Q.S. Litz Wire and Uninsulated Twisted Wire Assessment Using a Multilevel PEEC Method. IEEE Trans. Power Electron. 2022, 37, 2372–2381. [Google Scholar] [CrossRef]
- Lyu, J.; Chen, H.; Zhang, Y.; Du, Y.; Cheng, Q.S. Fast Simulation of Litz Wire Using Multilevel PEEC Method. IEEE Trans. Power Electron. 2020, 35, 12612–12616. [Google Scholar] [CrossRef]
- Lyu, J.; Liu, W.; Niu, S.; Liu, T.; Niu, S.; Chau, K.T. Three-Dimensional Free-Positioning Wireless Power Transfer via Multiple-Current Amplitude Modulation. IEEE J. Emerg. Sel. Top. Power Electron. 2025, 1. [Google Scholar] [CrossRef]
- Li, Z.; Niu, S.; Zhao, X.; Fu, W.N. Force Ripple Reduction of a Fractional Pole Pair Complementary Modularized Variable Reluctance Linear Machine for Long Stroke Application. IEEE Trans. Transp. Electrif. 2023, 9, 4613–4625. [Google Scholar] [CrossRef]
- Bi, Y.; Fu, W.; Niu, S.; Zhao, X.; Huang, J. Design of a Dual-Set Permanent Magnet Flux-Switching Machine With Enhanced Torque Density and Fault-Tolerance Capability. IEEE Trans. Transp. Electrif. 2024, 10, 9096–9108. [Google Scholar] [CrossRef]
- Niu, S.; Zhao, Q.; Niu, S.; Jian, L. A Comprehensive Investigation of Thermal Risks in Wireless EV Chargers Considering Spatial Misalignment from a Dynamic Perspective. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 5, 1560–1571. [Google Scholar] [CrossRef]
- Niu, S.; Niu, S.; Zhang, C.; Jian, L. A Super-Sensitive Metal Object Detection Method for DD-Coil-Engaged Wireless EV Chargers by Passive Electromagnetic Sensing. Energy Rep. 2022, 8, 370–379. [Google Scholar] [CrossRef]
- Huang, J.; Fu, W.; Niu, S.; Zhao, X.; Bi, Y. A Novel Dual-Side PM Machine with Decoupled Stator PM Topology. IEEE Trans. Ind. Electron. 2024, 71, 15301–15312. [Google Scholar] [CrossRef]
- Chauhan, T.; Goyal, C.; Kumari, D.; Thakur, A.K. A Review on Foreign Object Debris/Damage (FOD) and Its Effects on Aviation Industry. Mater. Today Proc. 2020, 33, 4336–4339. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, H.; Chen, Y.; Luo, B.; Zhou, W.; Mai, R.; He, Z. An Improved Compensation Method Reducing Displacement Current Loss for Multilayer Coils in IPT System. IEEE Trans. Power Electron. 2025, 40, 87–91. [Google Scholar] [CrossRef]
- Ruiz-Morales, P.; Ojeda-Rodríguez, Á.; Bernal-Méndez, J.; Martín-Prats, M.A. Winding Optimization for Reducing Parasitic Capacitances of Common-Mode Chokes. IEEE Trans. Electromagn. Compat. 2024, 66, 1125–1135. [Google Scholar] [CrossRef]
- Han, H.; Bhatti, M.A. Enhancing Wireless Charging Efficiency: Addressing Metal Interference through Advanced Electromagnetic Analysis and Detection Techniques. Wirel. Power Transf. 2024, 11, e008. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, Y.; Wang, Q.; Geng, H. A Novel Interpretable Short-Term Load Forecasting Method Based on Kolmogorov-Arnold Networks. IEEE Trans. Power Syst. 2024, 40, 1180–1183. [Google Scholar] [CrossRef]
- Huang, J.; Fu, W.; Niu, S.; Zhao, X. Reduction of Nonworking Armature Harmonics in Vernier Permanent Magnet Machines. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 6042–6053. [Google Scholar] [CrossRef]
- Ni, F.; Niu, S.; Li, Z.; Zhao, X. Novel Electrically Excited Doubly Salient Variable Reluctance Machine With High-Order-Harmonic Winding. IEEE Trans. Magn. 2023, 59, 8101906. [Google Scholar]
- Aghcheghloo, P.D.; Larkin, T.; Wilson, D.; Holleran, G.; Amirpour, M.; Kim, S.; Bickerton, S.; Covic, G. The Effect of an Emulator Inductive Power Transfer Pad on the Temperature of an Asphalt Pavement. Constr. Build. Mater. 2023, 392, 131783. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, C.; Dou, R.; Liu, S.; Zhao, L.; Zhang, P.; Yang, Q. Ferrite Pads Gap Thermal-Magnetic Evaluation and Mitigation for 11.1 kW Wireless Power Transfer. IEEE Trans. Magn. 2023, 59, 8600806. [Google Scholar] [CrossRef]
- Huang, J.; Fu, W.; Niu, S.; Zhao, X. Analysis of a Complementary Dual-Stator Vernier Machine With Reduced Non-Working Harmonics for Low-Speed Direct-Drive Applications. IEEE Trans. Energy Convers. 2024, 39, 711–721. [Google Scholar] [CrossRef]
- Liu, W.; Chau, K.T.; Lee, C.H.T.; Cao, L.; Han, W. Wireless Power and Drive Transfer for Piping Network. IEEE Trans. Ind. Electron. 2022, 69, 2345–2356. [Google Scholar] [CrossRef]
- Zimmer, S.; Helwig, M.; Winkler, A.; Modler, N. One-Way vs. Two-Way Coupled Simulation: Investigation of Thermal Management of Wireless Power Transfer Modules for Electric Vehicles. In Proceedings of the 2022 Wireless Power Week (WPW), IEEE, Bordeaux, France, 5–8 July 2022; pp. 84–89. [Google Scholar]
- Bi, Y.; Fu, W.; Niu, S.; Zhao, X.; Huang, J.; Qiao, Z. Torque Enhancement of a Dual-PM Flux-Switching Machine With Improved Multiple High-Order Working Harmonics. IEEE Trans. Transp. Electrific. 2024, 10, 2830–2843. [Google Scholar] [CrossRef]
- Gravante, E.; Idrissi, F.E.; Ramesh, P.; D’Arpino, M. A Novel Experimental Testing Setup and Calibration Procedures for Cylindrical Cell Thermal Models. IEEE Access 2023, 11, 60130–60141. [Google Scholar] [CrossRef]
- Wang, K.; Huang, S.; Zhang, J.; Ma, B.; Xing, J.; Lei, G.; Zhu, J. An Effective Cooling Scheme Using Micro Heat Pipe Array for Electrical Machines With Distributed Windings. IEEE Trans. Transp. Electrific. 2025, 11, 5891–5900. [Google Scholar] [CrossRef]
- Bi, Y.; Huang, J.; Wu, H.; Fu, W.; Niu, S.; Zhao, X. A General Pattern of Assisted Flux Barriers for Design Optimization of an Asymmetric V-Shape Interior Permanent Magnet Machine. IEEE Trans. Magn. 2022, 58, 8107304. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, J.; Wang, W.; Li, L.; Wang, Z.; Wang, S.; Guidi, G. Multiobjective Thermal Optimization Based on Improved Analytical Thermal Models of a 30-kW IPT System for EVs. IEEE Trans. Transp. Electrif. 2023, 9, 1910–1926. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; He, H.; Chau, K.T. Superior Energy Management for Fuel Cell Vehicles Guided by Improved DDPG Algorithm: Integrating Driving Intention Speed Prediction and Health-Aware Control. Appl. Energy 2025, 394, 126195. [Google Scholar] [CrossRef]
- Ni, F.; Li, Z.; Niu, S.; Liu, C. Complementary Series Magnetic Circuit-Based Stator-Yokeless Dual-Rotor PM Vernier Reluctance Machine for In-Wheel Propulsion. IEEE Trans. Transp. Electrif. 2025, 11, 4551–4560. [Google Scholar] [CrossRef]
- Li, Z.; Niu, S.; Zhao, X.; Fu, W.N. Quantitive Harmonic Analysis and Force Ripple Suppression of a Parallel Complementary Modular Linear Reluctance Machine. IEEE Trans. Energy Convers. 2023, 38, 789–799. [Google Scholar] [CrossRef]
- Guo, J.; Chau, K.T.; Liu, W.; Hou, Y. Pulse Increment Modulation of Three-Level Inverter-Based Wireless Power Transfer. IEEE Trans. Transp. Electrif. 2025, 1. [Google Scholar] [CrossRef]
- Qiao, X.; Niu, S.; Lin, J.; Chen, M.; Wu, Y. A Novel Magnetically Coupled Resonant Wireless Power Transfer Technique Used in Rotary Ultrasonic Machining Process. In Proceedings of the 2021 IEEE Wireless Power Transfer Conference (WPTC), IEEE, San Diego, CA, USA, 1–4 June 2021; pp. 1–4. [Google Scholar]
- Qin, R.; Li, J.; Sun, J.; Costinett, D. Shielding Design for High-Frequency Wireless Power Transfer System for EV Charging With Self-Resonant Coils. IEEE Trans. Power Electron. 2023, 38, 7900–7909. [Google Scholar] [CrossRef]
- Wen, C.; Xu, Q.; Chen, M.; Xiao, Z.; Wen, J.; Luo, Y.; Zhao, X.; Liang, Y.; Liang, K. Thermal Analysis of Coupled Resonant Coils for an Electric Vehicle Wireless Charging System. World Electr. Veh. J. 2022, 13, 133. [Google Scholar] [CrossRef]
- Xiong, M.; Wei, X.; Huang, Y.; Luo, Z.; Dai, H. Research on Novel Flexible High-Saturation Nanocrystalline Cores for Wireless Charging Systems of Electric Vehicles. IEEE Trans. Ind. Electron. 2021, 68, 8310–8320. [Google Scholar] [CrossRef]
- Platte, V.; Kampker, A.; Born, H.C.; Drexler, D.; Blanc, F.S.-L.; Bergemann, N.; De Buck, J.; Stötzel, T. Thermal Conductivity Analysis of Electrical Insulation Systems in Hairpin Technology With Taped Profiled Litz Wire and Flat Enamelled Wire. In Proceedings of the 2024 14th International Electric Drives Production Conference (EDPC), IEEE, Regensburg, Germany, 26–27 November 2024; pp. 1–10. [Google Scholar]
- Hemmati, R.; Wu, F.; El-Refaie, A. Survey of Insulation Systems in Electrical Machines. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), IEEE, San Diego, CA, USA, 12–15 May 2019; pp. 2069–2076. [Google Scholar]
- Dai, S.; Zhang, T.; Mo, S.; Cai, Y.; Yuan, W.; Ma, T.; Hu, L.; Wang, B. Study on Preparation, Thermal Conductivity, and Electrical Insulation Properties of Epoxy/AlN. IEEE Trans. Appl. Supercond. 2019, 29, 7700606. [Google Scholar] [CrossRef]
- Nategh, S.; Barber, D.; Lindberg, D.; Boglietti, A.; Aglen, O. Review and Trends in Traction Motor Design: Primary and Secondary Insulation Systems. In Proceedings of the 2018 XIII International Conference on Electrical Machines (ICEM), IEEE, Alexandroupoli, Greece, 3–6 September 2018; pp. 2607–2612. [Google Scholar]
- Matsuo, K.; Imura, T.; Hori, Y.; Kunigo, M.; Chimura, D.; Shimizu, S.; Taniguchi, T.; Fujihara, S. Proposed Method of Embedding Transmission Coils in Reinforced Concrete Pavement with Resin Pavement Material in Dynamic Wireless Power Transfer. In Proceedings of the 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), IEEE, Kyoto, Japan, 8–11 May 2024; pp. 199–204. [Google Scholar]
- Kneidl, M.; Masuch, M.; Rieger, D.; Kuhl, A.; Franke, J. Processing Influences of Resin-Based Insulation Materials for Wireless Power Transfer Applications. In Proceedings of the 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, East Rutherford, NJ, USA, 18–30 October 2020; pp. 551–555. [Google Scholar]
- Yonetsu, D.; Maehara, Y. Power Transfer Efficiency Calculation for Non-Contact Charger with Wire Coils in the 85-kHz Band. In Proceedings of the 2023 24th International Conference on the Computation of Electromagnetic Fields (COMPUMAG), IEEE, Kyoto, Japan, 22–26 May 2023; pp. 1–4. [Google Scholar]
- Born, H.C.; Oehler, F.; Platte, V.; Heimes, H.; Dorn, B.; Brans, F.; Drexler, D.; Blanc, F.S.-L.; Reising, S. Manufacturing Process and Design Requirements of Litz Wire with Focus on Efficiency Improvement of Traction Motors. In Proceedings of the 2022 12th International Electric Drives Production Conference (EDPC), IEEE, Regensburg, Germany, 29–30 November 2022; pp. 1–7. [Google Scholar]
- Riedel, A.; Kuhl, A.; Franke, J.; Graf, R.; Hubert, T.; Bauer, D. Experimental Investigation of a New Manufacturing Technology for Hairpin Stators with Litz Wires. In Proceedings of the 2022 12th International Electric Drives Production Conference (EDPC), IEEE, Regensburg, Germany, 29–30 November 2022; pp. 1–6. [Google Scholar]
- Born, H.C.; Blanc, F.S.-L.; Platte, V.; Kampker, A.; Heimes, H.; Dorn, B.; Brans, F.; Drexler, D.; Oehler, F.; Munster, A.Z.; et al. Development of a Production Process for Formed Litz Wire Stator Windings. In Proceedings of the 2022 12th International Electric Drives Production Conference (EDPC), IEEE, Regensburg, Germany, 29–30 November 2022; pp. 1–9. [Google Scholar]
- Mohammad, M.; Onar, O.C.; Galigekere, V.P.; Su, G.-J.; Wilkins, J. Thermal Design and Optimization of High- Power Wireless Charging System. In Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, Houston, TX, USA, 20–24 March 2022; pp. 480–485. [Google Scholar]
- Varghese, B.J.; Kamineni, A.; Roberts, N.; Halling, M.; Thrimawithana, D.J.; Zane, R.A. Design Considerations for 50 kW Dynamic Wireless Charging with Concrete-Embedded Coils. In Proceedings of the 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Seoul, Republic of Korea, 15–19 November 2020; pp. 40–44. [Google Scholar]
- Kneidl, M.; Gömmel, D.; Jordan, S.; Masuch, M.; Kühl, A.; Franke, J. Thermal Analysis of the Encapsulation of Resonance Circuit Modules for the Paving Into Electric Road Systems. In Proceedings of the 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), IEEE, Kyoto, Japan, 8–11 May 2024; pp. 159–164. [Google Scholar]
- Foote, A.; Asa, E.; Onar, O. Thermal Integration of a High Power Polyphase Inductive Coil Assembly. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE, Chicago, IL, USA, 19–21 June 2024; pp. 1–5. [Google Scholar]
- Liang, C.; Yang, G.; Yuan, F.; Huang, X.; Sun, Y.; Li, J.; Song, K. Modeling and Analysis of Thermal Characteristics of Magnetic Coupler for Wireless Electric Vehicle Charging System. IEEE Access 2020, 8, 173177–173185. [Google Scholar] [CrossRef]
- Tong, Y.; Salhi, I.; Wang, Q.; Lu, G.; Wu, S. Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review. Energies 2025, 18, 2312. [Google Scholar] [CrossRef]
- Quercio, M.; Lozito, G.M.; Corti, F.; Riganti Fulginei, F.; Laudani, A. Recent Results in Shielding Technologies for Wireless Electric Vehicle Charging Systems. IEEE Access 2024, 12, 16728–16740. [Google Scholar] [CrossRef]
- Rong, C.; Tao, X.; Lu, C.; Liu, M. Investigation of magnetic field shielding by mesh aluminum sheet in wireless power transfer system. In Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK, 18–21 June 2019; pp. 126–129. [Google Scholar]
- Mohammad, M.; Wodajo, E.T.; Choi, S.; Elbuluk, M.E. Modeling and Design of Passive Shield to Limit EMF Emission and to Minimize Shield Loss in Unipolar Wireless Charging System for EV. IEEE Trans. Power Electron. 2019, 34, 12235–12245. [Google Scholar] [CrossRef]
- Trenkler, Y.; McBride, L.E. Characterization of Metals as EMC Shields. IEEE Trans. Instrum. Meas. 1987, IM-36, 810–814. [Google Scholar] [CrossRef]
- Kittur, J.; Desai, B.; Chaudhari, R.; Loharkar, P.K. A Comparative Study of EMI Shielding Effectiveness of Metals, Metal Coatings and Carbon-Based Materials. In IOP Conference Series: Materials Science and Engineering, Proceedings of 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling (ICEMEM-2019), Mumbai, India, 23–24 December 2019; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 810. [Google Scholar]
- Bulkunde, U.S.; Agarwal, V. Analysis of Ferrite Arrangement in Rectangular Coil for Wireless Charging of Electric Vehicles. In Proceedings of the 2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), Bhubaneswar, India, 10–13 December 2023; pp. 1–6. [Google Scholar]
- La, Y.; Yuan, Y.; Zhao, Y.; Shen, S.; Yin, F. Optimized Shielding Combination of the Ferrite Bars and Annular Aluminum Ring for WPT Systems. In Proceedings of the 2024 6th Asia Energy and Electrical Engineering Symposium(AEEES), Chengdu, China, 28–31 March 2024; pp. 469–473. [Google Scholar]
- Damhuis, C.; Kraus, D.; Herzog, H.G. Study on Coil Sizing and Shielding Materials High-Power Wireless Power Transfer Systems for Electric Vehicle Charging. In Proceedings of the 2022 Wireless Power Week (WPW), Bordeaux, France, 5–8 July 2022; pp. 454–459. [Google Scholar]
- Jiang, B.; Yang, H.; Wang, Y.; Liu, Y.; Geng, H.; Zeng, H.; Ding, J. Dynamic Temporal Dependency Model for Multiple Steps Ahead Short-Term Load Forecasting of Power System. IEEE Trans. Ind. Appl. 2024, 60, 5244–5254. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, K.; Li, S.; Yang, F.; Cheng, S.; Eldeeb, H.H.; Kang, J.; Xu, G. Shielding Optimization of IPT System Based on Genetic Algorithm for Efficiency Promotion in EV Wireless Charging Applications. IEEE Trans. Ind. Appl. 2021, 58, 1190–1200. [Google Scholar] [CrossRef]
- Man, E.; Wang, C.; Wei, Z.; Sun, Z.; Luo, H.; Chen, S. Structural Optimization of Composite Shielding Layer in Magnetic Couplers for Wireless Charging of Electric Vehicles. In Proceedings of the 2024 4th International Conference on New Energy and Power Engineering (ICNEPE), Guangzhou, China, 8–10 November 2024; pp. 744–747. [Google Scholar]
- Mohammad, M.; Haque, M.S.; Choi, S. A Litz-Wire Based Passive Shield Design to Limit EMF Emission from Wireless Charging System. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 97–104. [Google Scholar]
- Yadav, A.; Bera, T.K. Design and Performance Analysis of Single Sided Magnetic Coupler for Leakage Magnetic Field Reduction in a Wireless Power Transfer System with Ferrite and Alnico Material. In Proceedings of the 2024 6th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 20–22 June 2024; pp. 1–5. [Google Scholar]
- Lee, S.-H.; Kim, M.-Y.; Lee, B.-S.; Lee, J. Impact of Rebar and Concrete on Power Dissipation of Wireless Power Transfer Systems. IEEE Trans. Ind. Electron. 2019, 67, 276–287. [Google Scholar] [CrossRef]
- Hu, Y.; Heng, T.; Zhang, T.; Zhou, W.; Chen, Q. An Improved Magnetic Coupling Resonant Wireless Power Transfer System Based on Ferrite-Nanocrystalline Hybrid Shielding Method. Int. J. Circuit Theory Appl. 2025, 53, 3592–3605. [Google Scholar] [CrossRef]
- Sun, J.; Qin, R.; Li, J.; Costinett, D.J.; Tolbert, L.M. Design of a Resonant Reactive Shielding Coil for Wireless Power Transfer System. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 1565–1572. [Google Scholar]
- Dayerizadeh, A.; Taylor, S.; Feng, H.; Lukic, S. Light Weight and Efficient Litz-Wire Based Ferrite-Less Shielding for Wireless Power Transfer. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 3190–3194. [Google Scholar]
- Lu, J.; Zhu, G.; Mi, C.C. Foreign object detection in wireless power transfer systems. IEEE Trans. Ind. Applicat. 2022, 58, 1340–1354. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Z.; Zhu, J.; Li, S.; Mi, C. A review of foreign object detection (FOD) for inductive power transfer systems. eTransportation 2019, 1, 100002. [Google Scholar] [CrossRef]
- Sonnenberg, T.; Stevens, A.; Dayerizadeh, A.; Lukic, S. Combined foreign object detection and live object protection in wireless power transfer systems via real-time thermal camera analysis. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 1547–1552. [Google Scholar]
- Kohmura, A.; Futatsumori, S.; Yonemoto, N.; Okada, K. Optical fiber connected millimeter-wave radar for FOD detection on runway. In Proceedings of the 2013 European Radar Conference, Nuremberg, Germany, 9–11 October 2013; pp. 41–44. [Google Scholar]
- Huang, S.-J.; Su, J.-L.; Dai, S.-H.; Tai, C.-C.; Lee, T.-S. Enhancement of wireless power transmission with foreign-object detection considerations. In Proceedings of the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–2. [Google Scholar]
- Jafari, H.; Moghaddami, M.; Sarwat, A.I. Foreign object detection in inductive charging systems based on primary side measurements. IEEE Trans. Ind. Appl. 2019, 55, 6466–6475. [Google Scholar] [CrossRef]
- Fukuda, S.; Nakano, H.; Murayama, Y.; Murakami, T.; Kozakai, O.; Fujimaki, K. A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems. In Proceedings of the 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 10–11 May 2012; pp. 241–244. [Google Scholar]
- Kuyvenhoven, N.; Dean, C.; Melton, J.; Schwannecke, J.; Umenei, A.E. Development of a foreign object detection and analysis method for wireless power systems. In Proceedings of the 2011 IEEE Symposium on Product Compliance Engineering Proceedings, San Diego, CA, USA, 10–12 October 2011; pp. 1–6. [Google Scholar]
- Wireless Power Consortium. Qi 2.0 Standard: Enhanced Wireless Charging. Available online: https://www.wirelesspowerconsortium.com/standards/qi-wireless-charging/ (accessed on 1 June 2025).
- Liang, H.W.R.; Wang, H.; Lee, C.-K.; Hui, S.Y.R. Analysis and performance enhancement of wireless power transfer systems with intended metallic objects. IEEE Trans. Power Electron. 2021, 36, 1388–1398. [Google Scholar] [CrossRef]
- Thai, V.X.; Jang, G.C.; Jeong, S.Y.; Park, J.H.; Kim, Y.-S.; Rim, C.T. Symmetric sensing coil design for the blind-zone free metal object detection of a stationary wireless electric vehicles charger. IEEE Trans. Power Electron. 2020, 35, 3466–3477. [Google Scholar] [CrossRef]
- Cheng, B.; Lu, J.; Zhang, Y.; Pan, G.; Chabaan, R.; Mi, C. A metal object detection system with multilayer detection coil layouts for electric vehicle wireless charging. Energies 2020, 13, 2960. [Google Scholar] [CrossRef]
- Xia, C.; Lu, C.; Zhao, S.; Yang, Z.; Cao, Y.; Liu, F.; Gao, Y. Planar double-winding foreign object detection for the EV wireless charging system based on time-division multiplexing. IEEE Trans. Power Electron. 2024, 39, 13988–14004. [Google Scholar] [CrossRef]
- Verghese, S.; Kesler, M.P.; Hall, K.L.; Lou, H.T. Foreign Object Detection in Wireless Energy Transfer Systems. U.S. Patent 9,442,172, 13 September 2016. [Google Scholar]
- Xia, C.; Cao, Y.; Yang, Z.; Zhao, S.; Wang, X.; Lu, C.; Liu, L. Dual-frequency metal object detection based on SPWM control for wireless EV charging system. IEEE Trans. Power Electron. 2025, 40, 2604–2618. [Google Scholar] [CrossRef]
- Zhao, S.; Xia, C.; Lu, C.; Yang, Z.; Sun, A. Identification of metal object types by high and low frequencies detection for wireless EV charger. IEEE Trans. Power Electron. 2025, 40, 2581–2592. [Google Scholar] [CrossRef]
- Chu, S.Y.; Zan, X.; Avestruz, A.-T. Electromagnetic model-based foreign object detection for wireless power transfer. IEEE Trans. Power Electron. 2022, 37, 100–113. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, C.; Jian, L. Blind-zone-free metal object detection for wireless EV chargers employing DD coils by passive electromagnetic sensing. IEEE Trans. Ind. Electron. 2023, 70, 965–974. [Google Scholar] [CrossRef]
- Niu, S.; Zhao, Q.; Chen, H.; Niu, S.; Jian, L. Noncooperative metal object detection using pole-to-pole EM distribution characteristics for wireless EV charger employing DD coils. IEEE Trans. Ind. Electron. 2024, 71, 6335–6344. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, C.; Shi, Y.; Niu, S.; Jian, L. Foreign object detection considering misalignment effect for wireless EV charging system. ISA Trans. 2022, 130, 655–666. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Q.; Tang, A. A novel inverter control strategy with power decoupling for microgrid operations in grid-connected and islanded modes. arXiv 2025, arXiv:2505.06664. [Google Scholar]
- Mo, Y.; Chen, S.; Xiao, J.; Wu, X.; Han, S. Detection and identification of living foreign object in EV wireless charging system based on millimeter wave radar. In Proceedings of the International Symposium on Electrical, Electronic, and Information Engineering, Leicester, UK, 28–30 August 2024; pp. 219–224. [Google Scholar]
- Mo, Y.; Xiao, J.; Chen, S.; Wu, X.; Gong, W. Research on living object detection technology in wireless charging system of electric vehicles. In Proceedings of the 2024 IEEE 7th International Electrical and Energy Conference (CIEEC), Harbin, China, 10–12 May 2024; pp. 7–12. [Google Scholar]
- Gupta, A.; Panchal, N.; Desai, D.; Dangi, D. Live human detection robot. Int. J. Innov. Res. Sci. Technol. 2014, 1, 293–297. [Google Scholar]
- Dixit, D.S.K.; Dhayagonde, M.S.B. Design and implementation of e-surveillance robot for video monitoring and living body detection. Int. J. Sci. Res. Publ. 2014, 4, 1–3. [Google Scholar]
- Bhatia, S.; Dhillon, H.S.; Kumar, N. Alive human body detection system using an autonomous mobile rescue robot. In Proceedings of the 2011 Annual IEEE India Conference, Hyderabad, India, 16–18 December 2011; pp. 1–5. [Google Scholar]
- Peng, M.; Ge, B.; Fu, X.; Kai, C. Wi-Tar: Object detection system based on CSI ratio. IEEE Sens. J. 2024, 24, 16540–16550. [Google Scholar] [CrossRef]
- Sun, Y.; Song, K.; Zhou, T.; Wei, G.; Cheng, Z.; Zhu, C. A shared method of metal object detection and living object detection based on the quality factor of detection coils for electric vehicle wireless charging. IEEE Trans. Instrum. Meas. 2023, 72, 9002517. [Google Scholar] [CrossRef]
- Thai, V.X.; Park, J.H.; Jeong, S.Y.; Rim, C.T. Multiple comb pattern based living object detection with enhanced resolution design for wireless electric vehicle chargers. In Proceedings of the PCIM Europe; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018; pp. 1–6. [Google Scholar]
- Zheng, Y.; Zhou, Y.; Xie, R.; Mao, X.; Chen, X.; Cheng, X.; Zhang, Y. A self-resonant foreign object detection system for metal and living object detection in electric vehicle wireless charging systems. IEEE Trans. Power Electron. 2025, 40, 6459–6463. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Thai, V.X.; Park, J.H.; Rim, C.T. Self-inductance-based metal object detection with mistuned resonant circuits and nullifying induced voltage for wireless EV chargers. IEEE Trans. Power Electron. 2019, 34, 748–758. [Google Scholar] [CrossRef]
- Chen, H.; Niu, S.; Shao, Z.; Jian, L. Recognizing multitype misalignments in wireless EV chargers with orientation-sensitive coils: A data-driven strategy using improved ResNet. IEEE Trans. Ind. Inform. 2024, 20, 280–290. [Google Scholar] [CrossRef]
- Kung, M.-L.; Lin, K.-H. Dual-band wireless power transfer with metal object and coil misalignment detection. In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 14–19 July 2024; pp. 1789–1790. [Google Scholar]
- Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar]
- Tan, L.; Li, C.; Li, J.; Wang, R.; Huang, T.; Li, H.; Huang, X. Mesh-based accurate positioning strategy of EV wireless charging coil with detection coils. IEEE Trans. Ind. Inform. 2021, 17, 3176–3185. [Google Scholar] [CrossRef]
- Ahmad, A.; Alam, M.S.; Rafat, Y.; Shariff, S.M.; Al-Saidan, I.S.; Chabaan, R.C. Foreign object debris detection and automatic elimination for autonomous electric vehicles wireless charging application. SAE Int. J. Electr. Veh. 2020, 9, 93–110. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Wang, J.; Tang, X. Multipurpose flexible positioning device based on electromagnetic balance for EVs wireless charging. IEEE Trans. Ind. Electron. 2021, 68, 10229–10239. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Q.; Ke, G.; Xu, L.; Ren, X.; Zhang, Z. Coil positioning based on DC pre-excitation and magnetic sensing for wireless electric vehicle charging. IEEE Trans. Ind. Electron. 2021, 68, 3820–3830. [Google Scholar] [CrossRef]
- Jeshma, V.; George, B. MR sensor-based coil alignment sensing system for wirelessly charged EVs. IEEE Sens. J. 2020, 20, 5588–5596. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, G.; Zhang, G.; Xie, S. Wireless power transfer positioning system with wide range direction-guided based on symmetrical triple-U auxiliary pad. World Electr. Veh. J. 2022, 13, 140. [Google Scholar] [CrossRef]
- Zavrel, M.; Kindl, V.; Tyrpekl, M. Foreign objects and living organism detection system for the wireless power transfer active zone in e-mobility. In Proceedings of the IECON 2023—49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October 2023; pp. 1–6. [Google Scholar]
- Ye, W.; Xu, J.; Parspour, N. A hybrid detector array for simultaneous detection of living and metal object in wireless power transfer systems. In Proceedings of the 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), Kyoto, Japan, 8–11 May 2024; pp. 618–621. [Google Scholar]
- Yang, Z.; Xia, C.; Sun, A.; Wang, X.; Zhao, S.; Li, F. Dual-mode foreign object detection system for metal and live object detection in wireless electric vehicle charger. IEEE Trans. Power Electron, 2025; in press. [Google Scholar] [CrossRef]
- Yeong, D.J.; Barry, J.; Walsh, J. Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors 2020, 21, 2140. [Google Scholar] [CrossRef] [PubMed]
Type | References | Key Features | Suitability for High-Power WEVC |
---|---|---|---|
Metallic shield | [137,138,139,140,141] | High electrical conductivity (reducing electric field), simple, robust, but prone to additional eddy current losses | ★★ |
Ferrite shield | [142,143,144,145,146,147] | High magnetic permeability (confining low-frequency magnetic fields), no significant eddy current losses | ★★★ |
Composite shield | [148,149,150,151] | High shielding effectiveness with reduced weight and volume, customizable for various application needs | ★★★★☆ |
Cancel coil shield | [118,146,152,153] | High effectiveness for suppressing specific leakage paths, minimal additional losses, light weight | ★ |
Method | Cost | Reliability | Location Capability | Suitability for High-Power WEVC |
---|---|---|---|---|
Physical Sensing | ★★ | ★★ | Yes (with imaging/radar) | ★★★ |
Self- Sensing | ★★★ | ★★ | No | ☆ |
EM Sensing | ★★ | ★★★ | Yes (with coil arrays) | ★★★★☆ |
Method | Cost | Reliability | Pre-Entry Detection | Suitability for High-Power WEVC |
---|---|---|---|---|
Millimeter-Wave Radar | ★ | ★★★★☆ | Yes | ★★★★ |
PIR/Ultrasonic | ★★★ | ★★★ | Limited | ★★★ |
Thermal Imaging | ★★ | ★★★★☆ | Yes | ★★★★ |
Comb Capacitor | ★★★☆ | ★★★ | No | ★★★☆ |
Self-Resonant Capacitor | ★★★★ | ★★★ | No | ★★★☆ |
Method | Cost | Reliability | Precision | Multi-Type Misalignment |
---|---|---|---|---|
GPS-based | ★★★ | ★★☆ | ≥10 cm | Horizontal only |
Camera-based | ★★ | ★★★ | cm-level | Horizontal, limited yaw |
RFID/UWB-based | ★☆ | ★★☆ | cm-level | Horizontal only |
Magnetic sensor-based | ★★★☆ | ★★★★ | cm-level | Horizontal, limited yaw |
Detection coil-based | ★★★★☆ | ★★★★ | ≤2 cm/1.5° | All types |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Jia, Q.; Hu, Y.; Yang, C.; Jian, L. Safety Management Technologies for Wireless Electric Vehicle Charging Systems: A Review. Electronics 2025, 14, 2380. https://doi.org/10.3390/electronics14122380
Niu S, Jia Q, Hu Y, Yang C, Jian L. Safety Management Technologies for Wireless Electric Vehicle Charging Systems: A Review. Electronics. 2025; 14(12):2380. https://doi.org/10.3390/electronics14122380
Chicago/Turabian StyleNiu, Songyan, Qirui Jia, Yang Hu, Chengbo Yang, and Linni Jian. 2025. "Safety Management Technologies for Wireless Electric Vehicle Charging Systems: A Review" Electronics 14, no. 12: 2380. https://doi.org/10.3390/electronics14122380
APA StyleNiu, S., Jia, Q., Hu, Y., Yang, C., & Jian, L. (2025). Safety Management Technologies for Wireless Electric Vehicle Charging Systems: A Review. Electronics, 14(12), 2380. https://doi.org/10.3390/electronics14122380