A Low-Loss and High-Bandwidth Horizontally Polarized Transition Between Rectangular Polymer Dielectric Waveguide and Microstrip Line for Array Application †
Abstract
:1. Introduction
2. Structure of the Proposed Transition
3. Equivalent Circuit Model and Design
3.1. Equicalent Circult Model
3.2. Design of the Proposed Transition
4. Experiment
4.1. Implementation and Simulation
4.2. Manufacture and Measurement
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, Q.J. Sub-THz/THz interconnect complement to electrical and optical interconnects: Addressing fundamental challenges related to communication distances. IEEE Solid State Circuits Mag. 2020, 12, 20–32. [Google Scholar] [CrossRef]
- Strömbeck, F.; Yan, Y.; Zirath, H. A Beyond 100-Gbps Polymer Microwave Fiber Communication Link at D-Band. IEEE Trans. Circuits Syst. I. Reg. Papers 2023, 70, 3017–3028. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ma, K.X.; Wang, Y.Q.; Xu, J.T. Wideband Millimeter-Wave Substrate Integrated Suspended Twisted Line for High-Speed Transmission. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 1959–1968. [Google Scholar] [CrossRef]
- Shin, J.; Eslampour, H.; Jeong, S.; Kim, W.; Yong, S.; Ahn, S.; Park, E.; Song, S. Signal Integrity of Die-to-Die Interface with Advanced Packages for Co-Packaged Optics. In Proceedings of the 2024 IEEE 33rd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Toronto, ON, Canada, 6–9 October 2024; pp. 1–3. [Google Scholar]
- Holloway, J.W.; Dogiamis, G.C.; Han, R. Innovations in terahertz interconnects: High-speed data transport over fully electrical terahertz waveguide links. IEEE Microw. Mag. 2020, 21, 35–50. [Google Scholar] [CrossRef]
- Wit, M.D.; Ooms, S.; Philippe, B.; Zhang, Y.; Reynaert, P. Polymer microwave fibers: A new approach that blends wireline, optical, and wireless communication. IEEE Microw. Mag. 2020, 21, 51–66. [Google Scholar] [CrossRef]
- Geiger, M.; Grüner, P.; Fischer, M.; Dürr, A.; Chaloun, T.; Waldschmidt, C. A Multimodal Dielectric Waveguide-Based Monopulse Radar at 160 GHz. IEEE Trans. Microw. Theory Tech. 2020, 68, 4825–4834. [Google Scholar] [CrossRef]
- Lumia, M.; Bragaglia, M.; Nanni, F.; Valeri, M.; Bouzekri, O.; Calignano, F.; Manfredi, D.; Addamo, G.; Paonessa, F.; Peverini, O.A. Investigation into Applicability of 3D-Printed Composite Polymers with Enhanced Mechanical Properties in the Development of Microwave Components. Electronics 2025, 14, 1865. [Google Scholar] [CrossRef]
- Atanasov, N.T.; Atanasov, B.N.; Atanasova, G.L. Flexible Wearable Antenna for IoT-Based Plant Health Monitoring. Electronics 2024, 13, 2956. [Google Scholar] [CrossRef]
- Wu, Y.; Yeng, I.; Yu, H. The improvement of CoZrTaB thin films on different substrates for flexible device applications. AIP Adv. 2021, 11, 025139. [Google Scholar] [CrossRef]
- Sturcken, N.; Davies, R.; Wu, H.; Lekas, M.; Shepard, K.; Cheng, K.W.; Chen, C.C.; Su, Y.S.; Tsai, C.Y.; Wu, K.D.; et al. Magnetic thin-film inductors for monolithic integration with CMOS. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 11.4.1–11.4.4. [Google Scholar]
- Geiger, M.; Hitzler, M.; Mayer, W.; Waldschmidt, C. Self-Aligning and Flexible Dielectric Waveguide Plug for MMICs at G-Band. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 261–264. [Google Scholar] [CrossRef]
- Dogiamis, G.C.; Brown, T.W.; Gaunkar, N.P.; Nam, Y.S.; Rane, T.S.; Ravikumar, S.; Neeli, V.B.; Chou, J.C.; Rami, S.; Swan, J. A 120-Gb/s 100–145-GHz 16-QAM dual-band dielectric waveguide interconnect with package integrated diplexers in Intel 16. IEEE Solid-State Circuits Lett. 2022, 5, 178–181. [Google Scholar] [CrossRef]
- Galler, T.; Chaloun, T.; Mayer, W.; Kröhnert, K.; Ambrosius, N.; Schulz-Ruhtenberg, M.; Waldschmidt, C. MMIC-to-Dielectric Waveguide Transitions for Glass Packages Above 150 GHz. IEEE Trans. Microw. Theory Tech. 2023, 71, 2807–2817. [Google Scholar] [CrossRef]
- Wit, M.D.; Zhang, Y.; Reynaert, P. Analysis and design of a foam-cladded PMF link with phase tuning in 28-nm CMOS. IEEE J. Solid-State Circuits 2019, 54, 1960–1969. [Google Scholar] [CrossRef]
- Häseker, J.S.; Schneider, M. 90 Degree Microstrip to Rectangular Dielectric Waveguide Transition in the W-Band. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 416–418. [Google Scholar] [CrossRef]
- Dorbath, B.; Distler, F.; Schür, J.; Vossiek, M. Ultra-low-loss interconnection between dielectric and planar transmission line technologies for millimeter-wave applications. In Proceedings of the 2020 German Microwave Conference (GeMiC), Cottbus, Germany, 9–11 March 2020; pp. 64–67. [Google Scholar]
- Zhan, H.B.; Li, X.C.; Sun, C.S.; Ning, K. Low-loss perpendicular transition between rectangular dielectric waveguide and microstrip line at W-band. IEEE Trans. Microw. Theory Tech. 2025, 73, 2823–2831. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wu, T.L. Vertically Polarized Planar Transition for Hollow-Dielectric-Waveguide-Based 5G/6G High-Speed mm-Wave Interconnect. IEEE Microw. Wirel. Techn. Lett. 2023, 33, 7–10. [Google Scholar] [CrossRef]
- Tsai, W.L.; Ocket, I.; Vaes, J.; Cauwe, M.; Reynaert, P.; Nauwelaers, B. Novel broadband transition for rectangular dielectric waveguide to planar circuit board at d band. In Proceedings of the 2018 IEEE MTT-S International Microwave Symposium (IMS), Philadelphia, PA, USA, 10–15 June 2018; pp. 386–389. [Google Scholar]
- Zhan, H.B.; Li, X.C.; Sun, C.S. Low-Loss Horizontal Transition Between Rectangular Dielectric Waveguide and Microstrip Line at W-Band. IEEE Microw. Wirel. Techn. Lett. 2024, 34, 371–374. [Google Scholar] [CrossRef]
- Fukuda, S.; Hino, Y.; Ohashi, S.; Takeda, T.; Shinke, S.; Uno, M.; Komor, K.i; Akiyama, Y.; Kawasaki, K.; Hajimiri, A. A 12.5+12.5 Gb/s full-duplex plastic waveguide interconnect. IEEE J. Solid-State Circuits 2011, 46, 3113–3125. [Google Scholar] [CrossRef]
- Liu, C.Y.; Ding, H.E.; Wu, S.H.; Wu, T.L. Extremely low-loss planar transition from hollow dielectric waveguide to printed circuit board for millimeter-wave interconnect. IEEE Trans. Microw. Theory Tech. 2021, 69, 4010–4020. [Google Scholar] [CrossRef]
- Ocket, I.; Cauwe, M.; Nauwelaers, B. Millimeter wave planar transition from plastic rectangular waveguide to 1 mm coax. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Zhan, H.B.; Li, X.C.; Sun, C.S.; Ning, K. Low-Loss Horizontally Polarized Transition Between Rectangular Dielectric Waveguide and Microstrip Line at W-Band. In Proceedings of the 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Indonesia, 17–20 November 2024; pp. 1272–1274. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 278–288. [Google Scholar]
- Yang, L.; Zhu, L.; Choi, W.W.; Tam, K.W. Analysis and design of wideband microstrip-to-microstrip equal ripple vertical transitions and their application to bandpass filters. IEEE Trans. Microw. Theory Tech. 2017, 65, 2866–2877. [Google Scholar] [CrossRef]
- Dey, U.; Hesselbarth, J. Millimeter-Wave Dielectric Slab-Based Chip-to-Chip Interconnect Network Allowing for Relaxed Assembly Tolerances. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 493–503. [Google Scholar] [CrossRef]
- Sun, J.X.; Cheng, Y.J.; Wang, L.; Fan, Y. Three-dimensional interconnection with magnetically coupled transition for W-Band integration applications. IEEE Trans. Microw. Theory Tech. 2023, 71, 112–121. [Google Scholar] [CrossRef]
- Hong, J.S.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2001; pp. 131–132. [Google Scholar]
- Elhawil, A.; Zhang, L.; Stiens, J.; Vounckx, R. A quasi-optical free-space method for dielectric constant characterization of polymer materials in mm-wave band. In Proceedings of the Symposium IEEE LEOS Benelux Chapter, Brussels, Belgium, 17–18 December 2007; pp. 187–190. [Google Scholar]
- Distler, F.; Oppelt, D.; Schür, J.; Vossiek, M. Design and characterization of a compact and robust shielded dielectric waveguide for mmw applications. In Proceedings of the 2018 11th German Microwave Conference (GeMiC), Freiburg, Germany, 12–14 March 2018; pp. 375–378. [Google Scholar]
- Meyer, A.; Schneider, M. Robust design of a broadband dual-polarized transition from PCB to circular dielectric waveguide for mm-wave applications. Int. J. Microw. Wirel. Tech. 2020, 12, 559–566. [Google Scholar] [CrossRef]
- Liu, C.Y.; Ding, H.E.; Wu, S.H.; Wu, T.L. Significant Crosstalk Reduction in High-Density Hollow Dielectric Waveguides by Photonic Crystal Fence. IEEE Trans. Microw. Theory Tech. 2021, 69, 1316–1326. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values | Parameters | Values |
---|---|---|---|---|---|
N1 | 1.068 | Cr | 5.0999 × 10−14 F | fp | 95 GHz |
Cp | 1.0526 × 10−13 F | Lr | 5.5034 × 10−11 H | M12 | 0.41 |
Lp | 2.6663 × 10−11 H | N2 | 1.31 | fr | 95 GHz |
J | 0.017 S | Qe1 | 2.74 | Qe2 | 2.91 |
Parameters | Values | Parameters | Values | Parameters | Values | Parameters | Values |
---|---|---|---|---|---|---|---|
wm | 0.28 | ar | 2.4 | br | 1.2 | wp | 0.8 |
lp | 0.88 | dr | 0.1 | sr | 0.4 | wt | 2 |
dt | 0.6 | at | 2 | bt | 1.2 | hr | 1.4 |
lr | 0.9 | lt | 1.2 | dg | 0.1 | lh | 8 |
ah | 6.5 | bh | 6.5 | ld | 1.5 | - | - |
Type | Polarization | Substrate | Substrate Thickness (mm) | Metal | Frequency Range 1 (GHz) | Return Loss 2 (dB) | Insertion Loss 3 (dB) |
---|---|---|---|---|---|---|---|
SIW-HDW 4 [19] | Vertically | TU933+ | 0.75 | Copper, Al | 54–66 | 10 | 0.48–1.87 |
CPW-RDW 5 [20] | Vertically | Rogers 5880 | 0.508 | Copper, Al | 128–139 | 10 | 2.0–2.7 |
ML-RDW [21] | Vertically | Rogers 3003 | 0.127 | Copper, Al | 79–108 | 10 | 0.52–2.36 |
ML-HDW [23] | Horizontally | - | 0.2 | Copper, Al | 53–62.3 | 10 | 0.68–2.85 |
ML-RDW [24] | Horizontally | LCP | 0.1 | Copper | 68–86 | 10 | 2.0–4.1 |
Proposed ML-RDW | Horizontally | Rogers 3003 | 0.127 | Copper, Al | 81.9–108.2 | 10 | 0.51–2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, H.; Li, X.; Sun, C.; Ning, K. A Low-Loss and High-Bandwidth Horizontally Polarized Transition Between Rectangular Polymer Dielectric Waveguide and Microstrip Line for Array Application. Electronics 2025, 14, 2345. https://doi.org/10.3390/electronics14122345
Zhan H, Li X, Sun C, Ning K. A Low-Loss and High-Bandwidth Horizontally Polarized Transition Between Rectangular Polymer Dielectric Waveguide and Microstrip Line for Array Application. Electronics. 2025; 14(12):2345. https://doi.org/10.3390/electronics14122345
Chicago/Turabian StyleZhan, Haibing, Xiaochun Li, Changsheng Sun, and Ken Ning. 2025. "A Low-Loss and High-Bandwidth Horizontally Polarized Transition Between Rectangular Polymer Dielectric Waveguide and Microstrip Line for Array Application" Electronics 14, no. 12: 2345. https://doi.org/10.3390/electronics14122345
APA StyleZhan, H., Li, X., Sun, C., & Ning, K. (2025). A Low-Loss and High-Bandwidth Horizontally Polarized Transition Between Rectangular Polymer Dielectric Waveguide and Microstrip Line for Array Application. Electronics, 14(12), 2345. https://doi.org/10.3390/electronics14122345