Design of Orientation-Independent Non-Invasive Glucose Sensor Based on Meta-Structured Antenna
Abstract
:1. Introduction
2. Design of the Proposed Non-Invasive Glucose Sensor
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Öberg, D.; Östenson, C.G. Performance of glucose dehydrogenase-and glucose oxidase-based blood glucose meters at high altitude and low temperature. Diabetes Care 2005, 28, 1261. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, W.V.; Mobashsher, A.T.; Abbosh, A. The progress of glucose monitoring-a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors 2019, 19, 800. [Google Scholar] [CrossRef] [PubMed]
- Agelet, L.E.; Hurburgh, C.R., Jr. A tutorial on near infrared spectroscopy and its calibration. Crit. Rev. Anal. Chem. 2010, 40, 246–260. [Google Scholar] [CrossRef]
- Li, N.; Zang, H.; Sun, H.; Jiao, X.; Wang, K.; Liu, T.C.; Meng, Y. A noninvasive accurate measurement or blood glucose levels with Raman spectroscopy of blood in microvessels. Molecules 2019, 24, 1500. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Baik, J.; Kim, H.; Park, S.; Kim, C. Ultrasound-modulated optical glucose sensing using a 1645 nm laser. Sci. Rep. 2020, 10, 13361. [Google Scholar] [CrossRef] [PubMed]
- Tura, A.; Sbrignadello, S.; Cianciavicchia, D.; Pacini, G.; Ravazzani, P. A low frequency electromagnetic sensor for indirect measurement of glucose concentration: In vitro experiments in different conductive solutions. Sensors 2010, 10, 5346–5358. [Google Scholar] [CrossRef] [PubMed]
- Gourzi, M.; Rouane, A.; Guelaz, R.; Alavi, M.S.; McHugh, M.B.; Nadi, M.; Roth, P. Non-invasive glycaemia blood measurements by electromagnetic sensor: Study in static and dynamic blood circulation. J. Med. Eng. Technol. 2005, 29, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Kandwal, A.; Igbe, T.; Li, J.; Liu, Y.; Li, S.; Liu, L.W.Y.; Nie, Z. Highly sensitive closed loop enclosed split ring biosensor with high field confinement for aqueous and blood-glucose measurements. Sci. Rep. 2020, 10, 4081. [Google Scholar] [CrossRef] [PubMed]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Kokabi, H.; Alquié, G.; Deshours, F.; Shubair, R.M. Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration. Sci. Rep. 2020, 10, 15200. [Google Scholar] [CrossRef] [PubMed]
- Malena, L.; Fiser, O.; Stauffer, P.R.; Drizdal, T.; Vrba, J.; Vrba, D. Feasibility evaluation of metamaterial microwave sensors for non-invasive blood glucose monitoring. Sensors 2021, 21, 6871. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, P.; Mohammadi, A.; Demir, S.; Kara, A. Compact size, and highly sensitive, microwave sensor for non-invasive measurement of blood glucose level. IEEE Sens. J. 2021, 21, 16033–16042. [Google Scholar] [CrossRef]
- Khalil, M.A.; Yong, W.H.; Islam, M.S.; Hoque, A.; Leei, C.C.; Soliman, M.S.; Islam, M.T. Cross enclosed square split ring resonator based on D.N.G. metamaterial absorber for X-band glucose sensing application. Heliyon 2024, 10, e26646. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.H.M.; Qureshi, S.A.; Abidin, Z.Z.; Majid, H.A.; See, C.H. Evaluation of microwave square ring metamaterial-based resonator for glucose detection. J. Eng. Appl. Sci. 2024, 71, 66. [Google Scholar] [CrossRef]
- Govind, G.; Akhtar, M.J. Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions. IEEE Sens. J. 2019, 19, 11900–11907. [Google Scholar] [CrossRef]
- Elsibaie, S.S.; Eldamak, A.R.; Elsheakh, D.N. Multiband complementary split ring resonators for non-invasive glucose monitoring. In Proceedings of the 2024 41st National Radio Science Conference (NRSC), New Damietta, Egypt, 16–18 April 2024; pp. 43–50. [Google Scholar]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S.; Alquié, G.; Deshours, F.; Kokabi, H.; Shubair, R.M. Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Rahayu, Y.; Nugraha, W.N.; Praludi, T.; Alaydrus, M.; Anhar; Masdar, H. Experimental based blood glucose monitoring with a noninvasive cylindrical biosensor antenna. Prog. Electromagn. Res. M 2023, 115, 71–81. [Google Scholar] [CrossRef]
- Kumar, A.; Wang, C.; Meng, F.Y.; Zhou, Z.L.; Zhao, M.; Yan, G.F.; Kim, E.S.; Kim, N.Y. High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection. Sensors 2020, 20, 4024. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Lee, J.H. Zeroth order resonance loop antenna. IEEE Trans. Antennas Propag. 2007, 55, 994–997. [Google Scholar] [CrossRef]
- Dima, R.; Costanzo, S.; Solimene, R. Dielectric models of blood-glucose solutions: A systematic literature review. IEEE Access 2024, 12, 163056–163077. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-M.; Bien, F.; Lee, J.-G. Design of Orientation-Independent Non-Invasive Glucose Sensor Based on Meta-Structured Antenna. Electronics 2025, 14, 2295. https://doi.org/10.3390/electronics14112295
Jeong J-M, Bien F, Lee J-G. Design of Orientation-Independent Non-Invasive Glucose Sensor Based on Meta-Structured Antenna. Electronics. 2025; 14(11):2295. https://doi.org/10.3390/electronics14112295
Chicago/Turabian StyleJeong, Jae-Min, Franklin Bien, and Jae-Gon Lee. 2025. "Design of Orientation-Independent Non-Invasive Glucose Sensor Based on Meta-Structured Antenna" Electronics 14, no. 11: 2295. https://doi.org/10.3390/electronics14112295
APA StyleJeong, J.-M., Bien, F., & Lee, J.-G. (2025). Design of Orientation-Independent Non-Invasive Glucose Sensor Based on Meta-Structured Antenna. Electronics, 14(11), 2295. https://doi.org/10.3390/electronics14112295