Multi-Channel Attention Fusion Algorithm for Railway Image Dehazing
Abstract
1. Introduction
2. The Overall Structural Framework
2.1. Feature Extraction and Application of Bilateral Grids
2.1.1. AHFM Feature Extraction
2.1.2. Application of Bilateral Grids
2.2. Full-Resolution Feature Reconstruction
2.2.1. RGBA Color Channel
2.2.2. Feature Reconstruction
2.3. CBAM Feature Fusion
2.3.1. Channeling Attention Mechanisms
2.3.2. Spatial Attention Mechanisms
3. Experiments and Analysis of Results
3.1. Experimental Platform and Setup
3.2. Experimental Procedure
3.2.1. Ablation Experiment
- No high-pass filtering module: no high-pass filtering module is introduced; instead, a general convolutional layer method is used for feature extraction operations, and other operations remain unchanged.
- No atmospheric luminance channel: no atmospheric luminance channel is introduced, i.e., the general color channels (R, G, B) are used to generate the guidance matrix, and other operations remain unchanged.
- No attention mechanism: Instead of introducing a CBAM module for feature fusion operation, a general convolutional layer method is used for feature fusion operation; other operations remain unchanged.
- Control experiment: the high-pass filter module, the atmospheric brightness channel, and the CBAM module are introduced into the model.
3.2.2. CBAM Validity Testing
3.2.3. Comparison Experiment
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, H.; Ma, Q.; Cao, S.; Wang, Z. Researchand Application on Railway Vehicle Running Safety Monitor System (5T). J. Highw. Transp. Res. Dev. 2009, 26, 1–6. [Google Scholar]
- Wang, Y.; Cai, X.; Tang, X.; Pan, S.; Wang, Y.; Yan, H.; Ren, Y.; Hou, Y. HSRA-Net: Intelligent Detection Network of Anomaly Monitoring Data in High-Speed Railway. IEEE Trans. Intell. Transp. Syst. 2024, 25, 20793–20803. [Google Scholar] [CrossRef]
- Asha, C.S.; Siddiq, A.B.; Akthar, R.; Rajan, M.R.; Suresh, S. ODD-Net: A hybrid deep learning architecture for image dehazing. Sci. Rep. 2024, 14, 30619. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, R.; Goswami, P.K. A Comprehensive Review on Deep Learning based Image Dehazing Techniques. In Proceedings of the International Conference on System Modeling and Advancement in Research Trends (SMART), Moradabad, India, 16–17 December 2022; pp. 1392–1397. [Google Scholar]
- Lv, X.; Chen, W.; Shen, I. Real-Time Dehazing for Image and Video. In Proceedings of the Pacific Conference on Computer Graphics and Applications, Hangzhou, China, 25–27 September 2010; pp. 62–69. [Google Scholar]
- Jin, Y.; Chen, J.; Tian, F.; Hu, K. LFD-Net: Lightweight Feature-Interaction Dehazing Network for Real-Time Remote Sensing Tasks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9139–9153. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Wu, R.; Duan, Z.; Guo, C.; Chai, Z.; Li, C. Ridcp: Revitalizing real image dehazing via high-quality codebook priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–23 June 2023; pp. 22282–22291. [Google Scholar]
- Galteri, L.; Seidenari, L.; Bertini, M.; Del Bimbo, A. Deep generative adversarial compression artifact removal. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4826–4835. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dong, Y.; Ren, W.; Pan, J.; Gao, C.; Sang, N.; Yang, M. Semi-Supervised Image Dehazing. IEEE Trans. Image Process. 2020, 29, 2766–2779. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Pan, J.; Zhang, H.; Cao, X.; Yang, M.-H. Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int. J. Comput. Vis. 2017, 128, 240–259. [Google Scholar] [CrossRef]
- Song, Y.; Li, J.; Wang, X.; Chen, X. Single image dehazing using ranking convolutional neural network. IEEE Trans. Multimed. 2009, 20, 1548–1560. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, Y. Image dehazing algorithm based on DehazeNet and edge detection mean-guided filtering. Transducer Microsyst. Technol. 2020, 39, 150–153. [Google Scholar]
- Ullah, H.; Muhammad, K.; Irfan, M.; Anwar, S.; Sajjad, M.; Imran, A.S.; de Albuquerque, V.H.C. Light-DehazeNet: A novel lightweight CNN architecture for single image dehazing. IEEE Trans. Image Process. 2021, 30, 8968–8982. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. An all-in-one network for dehazing and beyond. arXiv 2017, arXiv:1707.06543. [Google Scholar]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11908–11915. [Google Scholar]
- Guo, C.; Yan, Q.; Anwar, S.; Cong, R.; Ren, W.; Li, C. Image dehazing transformer with transmission-aware 3d position embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5812–5820. [Google Scholar]
- Lu, Z.; Li, J.; Liu, H.; Huang, C.; Zhang, L.; Zeng, T. Transformer for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 457–466. [Google Scholar]
- Gao, G.; Cao, J.; Bao, C.; Hao, Q.; Ma, A.; Li, G. A novel transformer-based attention network for image dehazing. Sensors 2022, 22, 3428. [Google Scholar] [CrossRef] [PubMed]
- Sameh Arif, A.; Mansor, S.; Logeswaran, R. Combined bilateral and anisotropic-diffusion filters for medical image de-noising. In Proceedings of the 2011 IEEE Student Conference on Research and Development, Cyberjaya, Malaysia, 19–20 December 2011; pp. 420–424. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, W.; Cao, X.; Hu, X.; Wang, T.; Song, F.; Jia, X. Ultra-high-definition image dehazing via multi-guided bilateral learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16180–16189. [Google Scholar]
- Chen, J.; Paris, S.; Durand, F. Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. (TOG) 2007, 26, 103-es. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Brauwers, G.; Frasincar, F. A general survey on attention mechanisms in deep learning. IEEE Trans. Knowl. Data Eng. 2021, 35, 3279–3298. [Google Scholar] [CrossRef]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Easwaran, A.; Genest, B.; Suganthan, P.N. Your data is not perfect: Towards cross-domain out-of-distribution detection in class-imbalanced data. Expert Syst. Appl. 2025, 267, 126031. [Google Scholar] [CrossRef]
- Wang, C.; Cao, R.; Wang, R. Learning discriminative topological structure information representation for 2D shape and social network classification via persistent homology. Knowl.-Based Syst. 2025, 311, 113125. [Google Scholar] [CrossRef]
Experimental Group | Module | Dataset | |||||
---|---|---|---|---|---|---|---|
Public Datasets (Outdoor) | Customized Datasets | ||||||
AHFM | A-Channel | CBAM | PSNR | SSIM | PSNR | SSIM | |
A | ✓ | ✓ | 33.89 | 0.9445 | 28.33 | 0.9091 | |
B | ✓ | ✓ | 32.62 | 0.9536 | 28.07 | 0.8966 | |
C | ✓ | ✓ | 31.97 | 0.9405 | 27.46 | 0.8903 | |
D | ✓ | ✓ | ✓ | 35.27 | 0.9869 | 30.41 | 0.9472 |
Methodologies | Public Datasets (Outdoor) | Customized Datasets | Params | Params | ||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | (M) | (G) | |
DCP | 19.21 | 0.8547 | 17.42 | 0.8238 | ||
LDNet | 28.33 | 0.9019 | 25.97 | 0.8659 | 0.017 | 0.45 |
AODNet | 23.57 | 0.8825 | 20.08 | 0.8427 | 0.004 | 0.04 |
EFANet | 33.87 | 0.9731 | 28.46 | 0.9464 | 4.79 | 48.79 |
Delaimer | 35.21 | 0.9854 | 29.77 | 0.9528 | 0.86 | 42.64 |
Ours | 35.27 | 0.9869 | 30.41 | 0.9511 | 2.17 | 31.51 |
Parameter Combination | Methodologies | Public Datasets (Outdoor) | |
---|---|---|---|
PSNR | SSIM | ||
, | DCP | 18.02 | 0.8277 |
LDNet | 26.89 | 0.8731 | |
AODNet | 22.61 | 0.8564 | |
FFANet | 31.89 | 0.9527 | |
Delanner | 32.45 | 0.9613 | |
Ours | 34.12 | 0.9721 | |
, | DCP | 15.83 | 0.8016 |
LDNet | 21.36 | 0.8472 | |
AODNet | 18.08 | 0.8206 | |
FFANet | 26.53 | 0.8911 | |
Delanner | 27.12 | 0.9027 | |
Ours | 29.84 | 0.9385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Cai, Z.; Li, S.; Hu, S.; Tu, J.; Chen, S.; Xie, K.; Zhang, W. Multi-Channel Attention Fusion Algorithm for Railway Image Dehazing. Electronics 2025, 14, 2241. https://doi.org/10.3390/electronics14112241
Xu H, Cai Z, Li S, Hu S, Tu J, Chen S, Xie K, Zhang W. Multi-Channel Attention Fusion Algorithm for Railway Image Dehazing. Electronics. 2025; 14(11):2241. https://doi.org/10.3390/electronics14112241
Chicago/Turabian StyleXu, Haofei, Ziyu Cai, Shanshan Li, Siyang Hu, Junrong Tu, Song Chen, Kai Xie, and Wei Zhang. 2025. "Multi-Channel Attention Fusion Algorithm for Railway Image Dehazing" Electronics 14, no. 11: 2241. https://doi.org/10.3390/electronics14112241
APA StyleXu, H., Cai, Z., Li, S., Hu, S., Tu, J., Chen, S., Xie, K., & Zhang, W. (2025). Multi-Channel Attention Fusion Algorithm for Railway Image Dehazing. Electronics, 14(11), 2241. https://doi.org/10.3390/electronics14112241