Remote Vibration Monitoring of Combustion Engines Utilising Edge Computing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of the Use of Selected Types of MEMS Accelerometers
- MMA7361LC
- ADXL335
- MPU-6050 and ADXL345
2.2. Time-Domain Analysis of Vibration Signals
- Average value :
- Peak value :
- Peak-to-peak value :
- Root mean square (RMS) value :
- Variance :
- Standard deviation :
- Skewness S:
- Kurtosis K:
- Form factor :
- Crest factor :
- Impulse factor :
3. Data Acquisition and Edge Processing
3.1. Measurement System with 3G/4G Communication
3.2. Edge Computing for Improved Performance of the Measurement System
3.3. Data Acquisition System
- Step 1:
- The AVR reads vibration data from the MPU-6050 sensor.
- Step 2:
- The AVR calculates several parameters: average value , peak value , peak-to-peak value , root mean square (RMS) value , variance , standard deviation , skewness S, kurtosis K, form factor , crest factor , and impulse factor .
- Step 3:
- The AVR sends the calculated and converted data to the ESP32 over UART. This involves a serial communication protocol to pass the data between the two devices.
- Step 4:
- The ESP32 is responsible for connecting to the Internet and transmitting the data to the broker with the MQTT protocol (described in the next section of the article).
3.4. MQTT Protocol
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Limitations and Future Work
Component | Flash [kB] | RAM [kB] | Notes |
---|---|---|---|
Sensor data acquisition (I2C, SPI, ADC) | 20–30 | 2–4 | Sensor interface drivers and real-time polling/control routines |
Signal processing (including FFT) | 40–80 | 10–40 | Includes spectral analysis and time-domain processing (e.g., RMS, skew, kurtosis) |
Acquisition buffers | – | 10–32 | Used for holding raw and filtered samples; depends on sampling rate and signal length |
Communication stack (UART, MQTT, BLE) | 10–30 | 2–8 | Protocol libraries and buffers (e.g., MQTT topics, BLE descriptors) |
Acoustic input (optional MEMS microphone and FFT) | 32–64 | 16–48 | Audio path buffering and spectral processing (if included) |
Estimated total (typical) | 100–160 | 32–64 | Without audio: 70–100 kB Flash, 20–40 kB RAM |
Sensor Setup | MCU Clock [MHz] | Data Rate [kB/s] | Notes |
---|---|---|---|
Accelerometer (MPU-6050) | 16–32 | 5–20 | Basic data acquisition and processing (RMS, standard deviation, and others) |
Accelerometer, Hall-effect sensor (RPM) | 16–32 | 5–30 | Adds RPM signal for synchronisation with vibration cycles |
Accelerometer, Hall-effect sensor (RPM), Temperature sensors (RTD/Thermocouple) | 16–48 | 10–40 | Adds thermal monitoring for vibration context (increased data processing) |
Accelerometer, Hall-effect sensor (RPM), Acoustic sensor (MEMS microphone) | 32–64 | 20–60 | Audio input and spectral processing (FFT for acoustic monitoring) |
Accelerometer, Hall-effect sensor (RPM), Temperature sensors, MEMS microphone (full setup) | 32–64 | 40–100 | Full setup with multi-domain analysis (mechanical, thermal, and acoustic signals) |
Recommended MCU (typical) | 32–64 MHz | 20–80 kB/s | STM32F4, ESP32, or similar |
Protocol | Use Case | Max Data Rate | Comments |
---|---|---|---|
UART | Microcontroller communication (e.g., ESP32) | Up to 1 Mbps | Suitable for low-latency, short-range communication. |
I2C | Sensor-to-MCU communication (e.g., MPU-6050, temperature sensors) | 400 kbps | Connects multiple moderate-speed sensors on shared bus. |
SPI | High-speed sensors (e.g., external accelerometers) | Up to 10 Mbps | Faster than I2C, suitable for high-frequency data acquisition. |
MQTT | Data transmission to server (Edge-to-Cloud) | Variable | Lightweight IoT protocol, requires broker; suitable for wireless/cloud integration. |
BLE | Low-power wireless link (sensor-to-MCU) | Up to 1 Mbps | Ideal for mobile or battery-powered devices with short-range needs. |
CAN | Vehicle communication bus (e.g., engine control unit) | 1 Mbps | Real-time communication standard in automotive systems. |
Wi-Fi | Wireless data transmission (Edge-to-Cloud) | Up to 54 Mbps | Suitable for high-speed transfer of data to cloud or remote hosts. |
References
- de Brito André, P.S.; Varum, H. Accelerometers: Principles, Structure and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2013. [Google Scholar]
- Rasras, M.; Elfadel, I.A.M.; Ngo, H.D. MEMS Accelerometers; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Varanis, M.; Silva, A.; Mereles, A.; Pederiva, R. MEMS accelerometers for mechanical vibrations analysis: A comprehensive review with applications. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 527. [Google Scholar] [CrossRef]
- Greve, D.W.; Oppenheim, I.J.; Wu, W.; Wright, A.P. Development of a MEMS acoustic emission sensor system. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007; SPIE: Bellingham, WA, USA, 2007; Volume 6529, pp. 386–394. [Google Scholar]
- Zhang, Y.; Wu, Y.; Wu, X.; Xi, X.; Wang, J. A novel vibration mode testing method for cylindrical resonators based on microphones. Sensors 2015, 15, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- De Silva, C.W. Vibration: Fundamentals and Practice; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Prażnowski, K.; Mamala, J.; Bieniek, A.; Graba, M. Identification and classification of selected internal combustion engine inefficiency based on vehicle structure vibrations. Vib. Phys. Syst. 2020, 31, 2020110. [Google Scholar]
- Liyanagedera, N.; Ratnaweera, A.; Randeniya, D. Vibration signal analysis for fault detection of combustion engine using neural network. In Proceedings of the 2013 IEEE 8th International Conference on Industrial and Information Systems, Peradeniya, Sri Lanka, 17–20 December 2013; pp. 427–432. [Google Scholar]
- Vinya, V.L.; Manivannan, K.; Manivannan, S.; Sathiyamoorthy, C.; Jagadeeswaran, M.; Meenakshi, B. Cloud-Enabled Predictive Vehicle Health Monitoring and Maintenance with LSTM Networks for Time-Series Analysis. In Proceedings of the 2024 First International Conference on Innovations in Communications, Electrical and Computer Engineering (ICICEC), Davangere, India, 24–25 October 2024; pp. 1–6. [Google Scholar]
- Jafarian, K.; Darjani, M.; Honarkar, Z. Vibration analysis for fault detection of automobile engine using PCA technique. In Proceedings of the 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA), Qazvin, Iran, 27–28 January 2016; pp. 372–376. [Google Scholar]
- Yadi, M.; Morimoto, Y.; Takaya, Y. Vibration distribution measurement of car door and engine head using oppa vibration distribution analyzer. Vibration 2023, 6, 421–433. [Google Scholar] [CrossRef]
- Łoza, Ł. The analysis of vibrations in the vehicle with naturally aspirated and turbocharged gasoline engine. Combust. Engines 2020, 59, 19–23. [Google Scholar]
- Ahsan, M.; Bismor, D.; Fabiś, P. Analysis of the Vehicle Engine Misfires using Frequency-Domain Approaches at Various RPMs with ADXL1002 Accelerometer. Arch. Acoust. 2024, 49, 507–516. [Google Scholar] [CrossRef]
- Xu, C.; Li, S.; Cao, F.; Qiu, X. Misfire detection based on generalized force identification at the engine centre of gravity. IEEE Access 2019, 7, 165039–165047. [Google Scholar] [CrossRef]
- Canal, R.; Riffel, F.K.; Bonomo, J.P.A.; de Carvalho, R.S.; Gracioli, G. Misfire detection in combustion engines using machine learning techniques. In Proceedings of the 2023 XIII Brazilian Symposium on Computing Systems Engineering (SBESC), Porto Alegre, Brazil, 21–24 November 2023; pp. 1–6. [Google Scholar]
- Ahmed, H.E.; Sahandabadi, S.; Bhawya; Ahamed, M.J. Application of MEMS Accelerometers in Dynamic Vibration Monitoring of a Vehicle. Micromachines 2023, 14, 923. [Google Scholar] [CrossRef]
- Verma, A.; Goyal, A.; Kumara, S.; Kurfess, T. Edge-cloud computing performance benchmarking for IoT based machinery vibration monitoring. Manuf. Lett. 2021, 27, 39–41. [Google Scholar] [CrossRef]
- Michala, A.L.; Vourganas, I.; Coraddu, A. Vibration edge computing in maritime IoT. ACM Trans. Internet Things 2021, 3, 1–18. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, S.; Cui, T.; Mu, X.; Luo, T.; Wang, S.; Wu, G. Edge Computing and Fault Diagnosis of Rotating Machinery Based on MobileNet in Wireless Sensor Networks for Mechanical Vibration. Sensors 2024, 24, 5156. [Google Scholar] [CrossRef] [PubMed]
- Halenar, I.; Halenarova, L.; Tanuska, P.; Vazan, P. Machine Condition Monitoring System Based on Edge Computing Technology. Sensors 2025, 25, 180. [Google Scholar] [CrossRef]
- Vasavi, S.; Aswarth, K.; Pavan, T.S.D.; Gokhale, A.A. Predictive analytics as a service for vehicle health monitoring using edge computing and AK-NN algorithm. Mater. Today Proc. 2021, 46, 8645–8654. [Google Scholar] [CrossRef]
- Rahim, M.A.; Rahman, M.M.; Islam, M.S.; Muzahid, A.J.M.; Rahman, M.A.; Ramasamy, D. Deep learning-based vehicular engine health monitoring system utilising a hybrid convolutional neural network/bidirectional gated recurrent unit. Expert Syst. Appl. 2024, 257, 125080. [Google Scholar] [CrossRef]
- Dennler, N.; Haessig, G.; Cartiglia, M.; Indiveri, G. Online detection of vibration anomalies using balanced spiking neural networks. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (Aicas), Washington, DC, USA, 6–9 June 2021; pp. 1–4. [Google Scholar]
- Freescale Semiconductor. ±1.5g, ±6g Three Axis Low-g Micromachined Accelerometer; Technical Data, Rev. 1; Freescale Semiconductor: Austin, TX, USA, 2011. [Google Scholar]
- Analogue Devices. Small, Low Power, 3-Axis ±3 g Accelerometer; Datasheet, Rev. B; Analogue Devices: Wilmington, MA, USA, 2010. [Google Scholar]
- InvenSense Inc. MPU-6000 and MPU-6050 Product Specification; Rev. 3.4; InvenSense Inc.: San Jose, CA, USA, 2013. [Google Scholar]
- Analogue Devices. ADXL345. 3-Axis, ±2 g/±4 g/±8 g/±16 g Digital Accelerometer; Datasheet, Rev. G; Analogue Devices: Wilmington, MA, USA, 2022. [Google Scholar]
- Atmel Corporation. AVR121: Enhancing ADC Resolution by Oversampling; Atmel Corporation: San Jose, CA, USA, 2005. [Google Scholar]
- Zhang, Y.; Li, H.; Shen, S.; Zhang, G.; Yang, Y.; Liu, Z.; Xie, Q.; Gao, C.; Zhang, P.; Zhao, W. Investigation of acoustic injection on the MPU6050 accelerometer. Sensors 2019, 19, 3083. [Google Scholar] [CrossRef] [PubMed]
- Park, G.; Jung, I.Y. Real-Time Forward Head Posture Detection and Correction System Utilizing an Inertial Measurement Unit Sensor. Appl. Sci. 2024, 14, 9075. [Google Scholar] [CrossRef]
- Franco, T.; Sestrem, L.; Henriques, P.R.; Alves, P.; Varanda Pereira, M.J.; Brandão, D.; Leitão, P.; Silva, A. Motion sensors for knee angle recognition in muscle rehabilitation solutions. Sensors 2022, 22, 7605. [Google Scholar] [CrossRef]
- Koudelkova, Z.; Mizera, A.; Karhankova, M.; Mach, V.; Stoklasek, P.; Krupciak, M.; Minarcik, J.; Jasek, R. Verification of Finger Positioning Accuracy of an Affordable Transradial Prosthesis. Designs 2023, 7, 14. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H. Signals & Systems; Pearson Educación: London, UK, 1997. [Google Scholar]
- Lahdelma, S.; Juuso, E. Signal processing in vibration analysis. In Proceedings of the 5th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, Edinburgh, UK, 15–18 July 2008; pp. 879–889. [Google Scholar]
- Boashash, B. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Rencher, A.; Christensen, W. Methods of Multivariate Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Morris, A.S.; Langari, R. Measurement and Instrumentation: Theory and Application; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Wojtkowski, W. Distributed measurement data collecting system with mobile packet transmission. In Proceedings of the SPIE 11176, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, Wilga, Poland, 27 May–2 June 2019; p. 111765K. [Google Scholar]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef]
- Chilamkurthy, N.S.; Pandey, O.J.; Ghosh, A.; Cenkeramaddi, L.R.; Dai, H.N. Low-Power Wide-Area Networks: A Broad Overview of Its Different Aspects. IEEE Access 2022, 10, 81926–81959. [Google Scholar] [CrossRef]
- Wojtkowski, W.; Zankiewicz, A. Automotive diagnostic system with OBD connectivity. Metrol. Badania Zastos. 2022, M152, 292–303. [Google Scholar]
- Durand, T.; Visagie, L.; Booysen, M.T. Evaluation of next-generation low-power communication technology to replace GSM in IoT-applications. IET Commun. 2019, 13, 2533–2540. [Google Scholar] [CrossRef]
- Mohammed, M.J.; Ghazi, A.; Awad, A.M.; Hassan, S.I.; Jawad, H.M.; Jasim, K.M.; Nurmamatovna, M.A. A Comparison of 4G LTE and 5G Network Cybersecurity Performance. In Proceedings of the 2024 35th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 24–26 April 2024; pp. 452–464. [Google Scholar] [CrossRef]
- Longo, E.; Redondi, A. Design and implementation of an advanced MQTT broker for distributed pub/sub scenarios. Comput. Netw. 2023, 224, 109601. [Google Scholar] [CrossRef]
- Manowska, A.; Wycisk, A.; Nawrot, A.; Joachim, P. The Use of the MQTT Protocol in Measurement, Monitoring and Control Systems. Electronics 2023, 12, 17. [Google Scholar] [CrossRef]
- Fawwaz, D.Z.; Chung, S.H.; Ahn, C.W.; Kim, W.S. Optimal Distributed MQTT Broker and Services Placement for SDN-Edge Based Smart City Architecture. Sensors 2022, 22, 3431. [Google Scholar] [CrossRef]
Sensor | Acceleration Range [g] | Bandwidth [Hz] | Resolution [bit] | Output Interface |
---|---|---|---|---|
MMA7361LC | ±1.5; ±6 | 400 (X, Y); 300 (Z) | n/a | Analogue |
ADXL335 | ±3 | 1600 (X, Y); 500 (Z) | 10 | Analog |
MPU-6050 | ±2; ±4; ±8; ±16 | n/a | 16 | Digital (/) |
ADXL345 | ±2; ±4; ±8; ±16 | 6.25–3200 | 10–13 | Digital (/) |
Rotational Speed [rpm] | S | K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1000 | −0.78 | −0.52 | −1.52 | 0.78 | 0.02 | 0.13 | −0.24 | 2.15 | 1.01 | −0.66 | 0.67 |
1500 | −0.80 | 0.16 | −0.84 | 0.88 | 0.14 | 0.37 | 0.36 | 2.01 | 1.10 | 0.18 | −0.20 |
2000 | −0.79 | 0.42 | −0.58 | 0.99 | 0.36 | 0.60 | 0.05 | 1.66 | 1.21 | 0.42 | −0.53 |
2500 | 0.48 | 1.59 | 0.59 | 0.83 | 0.47 | 0.68 | −1.04 | 4.55 | 1.16 | 1.90 | 3.22 |
3000 | −0.77 | 0.48 | −0.52 | 0.94 | 0.30 | 0.54 | −0.05 | 2.44 | 1.19 | 0.51 | −0.63 |
3500 | −0.71 | 0.33 | −0.67 | 0.87 | 0.25 | 0.50 | −0.59 | 3.75 | 1.20 | 0.38 | −0.46 |
Rotational Speed [rpm] | S | K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1000 | −0.07 | 0.08 | −0.92 | 0.10 | 0.01 | 0.07 | 0.01 | 1.89 | 1.23 | 0.84 | −1.22 |
1500 | −0.07 | 0.31 | −0.69 | 0.14 | 0.02 | 0.13 | 0.13 | 2.38 | 1.22 | 2.14 | −4.64 |
2000 | −0.06 | 0.27 | −0.73 | 0.17 | 0.02 | 0.15 | 0.08 | 2.24 | 1.19 | 1.61 | −4.19 |
2500 | −0.55 | −0.12 | −1.12 | 0.58 | 0.03 | 0.18 | −0.17 | 2.23 | 1.05 | −0.21 | 0.22 |
3000 | −0.06 | 0.80 | −0.20 | 0.40 | 0.16 | 0.40 | −0.04 | 1.97 | 1.16 | 2.00 | −13.96 |
3500 | −0.26 | 1.64 | 0.64 | 0.89 | 0.72 | 0.85 | 0.24 | 1.95 | 1.14 | 1.85 | −6.34 |
Rotational Speed [rpm] | S | K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1000 | 0.47 | 0.69 | −0.31 | 0.49 | 0.01 | 0.10 | 1.40 | 2.02 | 1.02 | 1.40 | 1.43 |
1500 | 0.48 | 0.72 | −0.28 | 0.50 | 0.01 | 0.11 | 0.26 | 1.77 | 1.03 | 1.45 | 1.49 |
2000 | 0.49 | 0.73 | −0.27 | 0.50 | 0.01 | 0.11 | −0.03 | 2.07 | 1.02 | 1.47 | 1.50 |
2500 | 0.47 | 0.81 | −0.19 | 0.52 | 0.05 | 0.22 | −1.13 | 3.75 | 1.08 | 1.55 | 1.71 |
3000 | 0.50 | 1.49 | 0.49 | 0.76 | 0.33 | 0.58 | −0.01 | 1.59 | 1.23 | 1.96 | 2.99 |
3500 | 0.40 | 1.75 | 0.75 | 0.81 | 0.50 | 0.71 | 0.29 | 1.81 | 1.27 | 2.15 | 4.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kociszewski, R.; Wojtkowski, W. Remote Vibration Monitoring of Combustion Engines Utilising Edge Computing. Electronics 2025, 14, 2118. https://doi.org/10.3390/electronics14112118
Kociszewski R, Wojtkowski W. Remote Vibration Monitoring of Combustion Engines Utilising Edge Computing. Electronics. 2025; 14(11):2118. https://doi.org/10.3390/electronics14112118
Chicago/Turabian StyleKociszewski, Rafał, and Wojciech Wojtkowski. 2025. "Remote Vibration Monitoring of Combustion Engines Utilising Edge Computing" Electronics 14, no. 11: 2118. https://doi.org/10.3390/electronics14112118
APA StyleKociszewski, R., & Wojtkowski, W. (2025). Remote Vibration Monitoring of Combustion Engines Utilising Edge Computing. Electronics, 14(11), 2118. https://doi.org/10.3390/electronics14112118