Insight into Optimally Noise- and Signal-Matched Three-Stage LNAs and Effect of Inter-Stage Mismatch
Abstract
:1. Introduction
2. Background
- 1.
- Providing a novel 3-D chart that relates LNA gain to inter-stage mismatch levels.
- 2.
- Demonstrating that the gain increases as the inter-stage mismatch levels increase.
- 3.
- Showing that the gain can be precisely determined as a function of two specific inter-stage mismatch levels— and —as illustrated in Figure 1 (left).
- 4.
- Validating the claim through EM simulations and measurements of two different three-stage LNA MMICs.
2.1. Active Device’s Input to Output Mismatch Relations
2.2. Active Device’s Optimum Linear and Noise Terminations
3. LNA Gain Versus Inter-Stage Mismatch Level Relations
3.1. Chart Preparation: Feasible Analysis Space
- A
- ;
- B
- ;
- C
- ;
- D
- vs. traced when pH;
- E
- ;
- F
- .
3.2. LNA Gain vs. Intermediate Stage Mismatch Levels Chart
4. Practical Examples
4.1. General Case, Any () Inside the Feasible Area
4.2. Special Case, When Within the Feasible Design Area
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragonese, E.; Scuderi, A.; Palmisano, G. A 0.13-µm SiGe BiCMOS LNA for 24-GHz Automotive Short-Range Radar. In Proceedings of the 2008 38th European Microwave Conference, Amsterdam, The Netherlands, 27–31 October 2008; pp. 1537–1540. [Google Scholar] [CrossRef]
- Limiti, E.; Colangeli, S.; Bentini, A.; Ciccognani, W. Robust GaN MMIC Chipset for T/R Module Front-End Integration. Int. J. Microw. Opt. Technol. 2014, 9, 6–13. [Google Scholar]
- Bettidi, A.; Carosi, D.; Cetronio, A.; Corsaro, F.; Costrini, C.; Lanzieri, C.; Marescialli, L. X-Band transmit/receive module MMIC chip-set based on emerging GaN and SiGe technologies. In Proceedings of the 2010 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 12–15 October 2010; pp. 250–255. [Google Scholar] [CrossRef]
- Limiti, E.; Ciccognani, W.; Cipriani, E.; Colangeli, S.; Colantonio, P.; Palomba, M.; Florian, C.; Pirola, M.; Ayllon, N. T/R modules front-end integration in GaN technology. In Proceedings of the 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 13–15 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Montazeri, S.; Bardin, J.C. A 2–4 GHz Silicon Germanium Cryogenic Low Noise Amplifier MMIC. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 1487–1490. [Google Scholar] [CrossRef]
- Montazeri, S.; Wong, W.T.; Coskun, A.H.; Bardin, J.C. Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration. IEEE Trans. Microw. Theory Tech. 2016, 64, 178–187. [Google Scholar] [CrossRef]
- Albinsson, B. A graphic design method for matched low-noise amplifiers. IEEE Trans. Microw. Theory Tech. 1990, 38, 118–122. [Google Scholar] [CrossRef]
- Engberg, J. Simultaneous Input Power Match and Noise Optimization using Feedback. In Proceedings of the 1974 4th European Microwave Conference, Montreux, Switzerland, 10–13 September 1974; pp. 385–389. [Google Scholar] [CrossRef]
- Güneş, F.; Demirel, S.; Özkaya, U. A low-noise amplifier design using the performance limitations of a microwave transistor for the ultra-wideband applications. Int. J. RF Microw. Comput. Aided Eng. 2010, 20, 535–545. [Google Scholar] [CrossRef]
- Corral, C.A. Design of microwave transistor amplifiers with optimum cascaded gain and noise. IET Microw. Antennas Propag. 2016, 10, 1196–1203. [Google Scholar] [CrossRef]
- Heinz, F.; Thome, F.; Leuther, A. Monolithically Integrated C-Band Low-Noise Amplifiers for Use in Cryogenic Large-Scale RF Systems. IEEE Trans. Microw. Theory Tech. 2023, 72, 2442–2451. [Google Scholar] [CrossRef]
- Parveg, D.; Varonen, M.; Kantanen, M. A Full Ka-Band GaN-on-Si Low-Noise Amplifier. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 1015–1018. [Google Scholar] [CrossRef]
- Fung, A.; Samoska, L.; Bowen, J.; Montanez, S.; Kooi, J.; Soriano, M.; Jacobs, C.; Manthena, R.; Hoppe, D.; Akgiray, A.; et al. X- to Ka- Band Cryogenic LNA Module for Very Long Baseline Interferometry. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 189–192. [Google Scholar] [CrossRef]
- Varonen, M.; Reeves, R.; Kangaslahti, P.; Samoska, L.; Kooi, J.W.; Cleary, K.; Gawande, R.S.; Akgiray, A.; Fung, A.; Gaier, T.; et al. An MMIC Low-Noise Amplifier Design Technique. IEEE Trans. Microw. Theory Tech. 2016, 64, 826–835. [Google Scholar] [CrossRef]
- Kooi, J.W.; Soriano, M.; Bowen, J.; Abdulla, Z.; Samoska, L.; Fung, A.K.; Manthena, R.; Hoppe, D.; Javadi, H.; Crawford, T.; et al. A Multioctave 8 GHz–40 GHz Receiver for Radio Astronomy. IEEE J. Microw. 2023, 3, 570–586. [Google Scholar] [CrossRef]
- Schleeh, J.; Moschetti, G.; Wadefalk, N.; Cha, E.; Pourkabirian, A.; Alestig, G.; Halonen, J.; Nilsson, B.; Nilsson, P.Å.; Grahn, J. Cryogenic LNAs for SKA band 2 to 5. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 164–167. [Google Scholar] [CrossRef]
- Longhi, P.E.; Pace, L.; Colangeli, S.; Ciccognani, W.; Limiti, E. Novel Design Charts for Optimum Source Degeneration Tradeoff in Conjugately Matched Multistage Low-Noise Amplifiers. IEEE Trans. Microw. Theory Tech. 2021, 69, 2531–2540. [Google Scholar] [CrossRef]
- Haus, H.A.; Adler, R.B. Circuit Theory of Linear Noisy Networks; The MIT Press: Cambridge, MA, USA, 1959. [Google Scholar] [CrossRef]
- Poole, C.; Grammenos, R. Correct Equations for Minimum Noise Measure of a Microwave Transistor Amplifier. IEEE Trans. Microw. Theory Tech. 2022, 70, 1361–1366. [Google Scholar] [CrossRef]
- Ciccognani, W.; Longhi, P.E.; Colangeli, S.; Limiti, E. Constant Mismatch Circles and Application to Low-Noise Microwave Amplifier Design. IEEE Trans. Microw. Theory Tech. 2013, 61, 4154–4167. [Google Scholar] [CrossRef]
- Boglione, L.; Webster, R.T. Unifying interpretation of reflection coefficient and smith chart definitions. IET Microw. Antennas Propag. 2011, 5, 1479–1487. [Google Scholar] [CrossRef]
- Lehmann, R.E.; Heston, D.D. X-Band Monolithic Series Feedback LNA. IEEE Trans. Microw. Theory Tech. 1985, 33, 1560–1566. [Google Scholar] [CrossRef]
- Allen, J.W. Gain Characterization of the RF Measurement Path; National Telecommunications and Information Administration: Washington, DC, USA, 2004.
- Danzilio, D. Advanced GaAs Integration for Single Chip mmWave Front-Ends. Microw. J. 2018, 61, 148–156. [Google Scholar]
- Kurokawa, K. Power Waves and the Scattering Matrix. IEEE Trans. Microw. Theory Tech. 1965, 13, 194–202. [Google Scholar] [CrossRef]
Parameter | Magnitude | Angle (°) |
---|---|---|
0.809 | −154.8 | |
2.504 | 72.4 | |
0.163 | −4.1 | |
0.384 | −95.0 | |
0.531 | 104.3 | |
(dB) | 1.5 | - |
) | 8.7 | - |
Stage | (pH) | ||
---|---|---|---|
0 | 129 | ||
55 | |||
0 | 111 |
Stage | ||
---|---|---|
Stage | |||
---|---|---|---|
− | |||
− | − | ||
− |
Stage | |||
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalrahman, F.; Longhi, P.E.; Colangeli, S.; Ciccognani, W.; Serino, A.; Limiti, E. Insight into Optimally Noise- and Signal-Matched Three-Stage LNAs and Effect of Inter-Stage Mismatch. Electronics 2025, 14, 1967. https://doi.org/10.3390/electronics14101967
Abdalrahman F, Longhi PE, Colangeli S, Ciccognani W, Serino A, Limiti E. Insight into Optimally Noise- and Signal-Matched Three-Stage LNAs and Effect of Inter-Stage Mismatch. Electronics. 2025; 14(10):1967. https://doi.org/10.3390/electronics14101967
Chicago/Turabian StyleAbdalrahman, Fida, Patrick E. Longhi, Sergio Colangeli, Walter Ciccognani, Antonio Serino, and Ernesto Limiti. 2025. "Insight into Optimally Noise- and Signal-Matched Three-Stage LNAs and Effect of Inter-Stage Mismatch" Electronics 14, no. 10: 1967. https://doi.org/10.3390/electronics14101967
APA StyleAbdalrahman, F., Longhi, P. E., Colangeli, S., Ciccognani, W., Serino, A., & Limiti, E. (2025). Insight into Optimally Noise- and Signal-Matched Three-Stage LNAs and Effect of Inter-Stage Mismatch. Electronics, 14(10), 1967. https://doi.org/10.3390/electronics14101967