A Reduced Sparse Dictionary Reconstruction Algorithm Based on Grid Selection
Abstract
:1. Introduction
2. Signal Model
3. Sparse Recovery Principle and Grid Mismatch Problem
3.1. Sparse Recovery Principle
3.2. Grid Mismatch Problem
4. Discussion Reduced Sparse Dictionary Reconstruction Algorithm Based on Grid Selection
4.1. Global Dictionary Construction
4.2. Local Reduction Dictionary Construction
Algorithm 1. GS-SR-STAP algorithm. |
Input: ΨV, U0, |
Initialization: ΨV = { }, v = { }, U0 = { }, Tn0 =I, k = 1 |
The first step: Global dictionary construction Use to construct a global dictionary The second step: Local grid selection The first grid selection: Adopting the local optimization criterion , three atoms with the largest power spectrum values in the current region are selected to narrow the local search range; The second grid selection: Using the above formula, the three atoms with larger power spectral values in the current region are further screened out. The jth local partition: Repeat the previous step until atom ψi j with the largest power spectrum value satisfies the condition of , and determine the Doppler frequency fd_opt and the spatial frequency fs_opt corresponding to atom ψi j. The third step: Local reduction dictionary construction The space-time plane is divided by a method of dividing the grid along the clutter ridge direction and the vertical direction of the clutter ridge. The spatial and Doppler frequencies of the atom are determined, and a reduction. dictionary is constructed. |
5. Simulation Results
5.1. Space-Time Power Spectrum Analysis of Clutter
5.2. Signal-to-Clutter-Plus-Noise-Ratio Loss Analysis
5.3. Output Power Analysis
5.4. Computational Complexity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, W.; Duan, K.; Wang, Y. Space time adaptive processing technique for airborne radar: An overview of its development and prospects. J. Radars 2017, 6, 575–586. [Google Scholar]
- Duan, K.; Xu, H.; Yuan, H.; Xie, H.; Wang, Y. Reduced-DOF three-dimensional STAP via subarray synthesis for nonsidelooking planar array airborne radar. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 3311–3325. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, H.; Li, G.; Meng, H.; Wang, X. STAP via sparse Recovery of Clutter Spectrum. Tien Tzu Hsueh Pao/Acta Electron. Sin. 2011, 39, 1389–1393. [Google Scholar]
- Wang, T. Study of Simplified STAP and Its Application to Airborne Radar; Research Paper; Xidian University: Xi’an, China, 2001. [Google Scholar]
- Yang, Z.; Li, X.; Wang, H. An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum. Acta Electron. Sin. 2014, 42, 1194. [Google Scholar]
- Duan, K.Q.; Wang, Z.T.; Xie, W.C.; Gao, F.; Wang, Y.L. A space-time adaptive processing algorithm based on joint sparse recovery. J. Radars 2014, 3, 229–234. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Bao, Z.; Peng, Y. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 70–81. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.; Zhang, Y. Research on Algorithms for Reduced Rank Adaptive Filtering. Radar Sci. Technol. 2005, 4, 232–239. [Google Scholar]
- Zhang, W.; He, Z.; Li, J.; Liu, H.; Sun, Y. A method for finding best channels in beam-space post-Doppler reduced-dimension STAP. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 254–264. [Google Scholar] [CrossRef]
- Honig, M.L.; Goldstein, J.S. Adaptive reduced-rank interference suppression based on the multistage Wiener filter. IEEE Trans. Commun. 2002, 50, 986–994. [Google Scholar] [CrossRef]
- De Lamare, R.C.; Wang, L.; Fa, R. Adaptive reduced-rank LCMV beamforming algorithms based on joint iterative optimization of filters: Design and analysis. Signal Process. 2010, 90, 640–652. [Google Scholar] [CrossRef]
- Melvin, W.L.; Showman, G.A. An approach to knowledge-aided covariance estimation. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1021–1042. [Google Scholar] [CrossRef]
- Zhang, T. Airborne MIMO Radar Clutter Suppression Based on Sparse Recovery; Research Paper; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2018. [Google Scholar]
- Lesicka, A.; Kawalec, A. An application of the orthogonal matching pursuit algorithm in space-time adaptive processing. Sensors 2020, 20, 3468. [Google Scholar] [CrossRef]
- Deng, J. Research on Compressive Sensing Signal Reconstruction by Convex Optimization; Research Paper; Harbin Institute of Technology: Harbin, China, 2011. [Google Scholar]
- Sun, K.; Meng, H.; Wang, Y.; Wang, X. Direct data domain STAP using sparse representation of clutter spectrum. Signal Process. 2011, 91, 2222–2236. [Google Scholar] [CrossRef]
- Duan, K.; Wang, Z.; Xie, W.; Chen, H.; Wang, Y. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Process. 2017, 11, 544–553. [Google Scholar] [CrossRef]
- Duan, K.; Liu, W.; Duan, G.; Wang, Y. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP. IET Radar Sonar Navig. 2018, 12, 557–564. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T. ADMM-based low-complexity off-grid space-time adaptive processing methods. IEEE Access 2020, 8, 206646–206658. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Lai, R. Gridless super-resolution sparse recovery for non-sidelooking STAP using reweighted atomic norm minimization. Multidimens. Syst. Signal Process. 2021, 32, 1259–1276. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, J.; Lai, R. Gridless Sparse Recovery for Non-sidelooking Space-Time Adaptive Processing Based on Atomic Norm Minimization. J. Electron. Inf. Technol. 2021, 43, 1235–1242. [Google Scholar]
- Yuan, H.; Xu, H.; Duan, K.; Xie, W.; Liu, W.; Wang, Y. Sparse Bayesian learning-based space-time adaptive processing with off-grid self-calibration for airborne radar. IEEE Access 2018, 6, 47296–47307. [Google Scholar] [CrossRef]
- Cui, W.; Wang, T.; Wang, D.; Liu, K. An efficient sparse Bayesian learning STAP algorithm with adaptive Laplace prior. Remote Sens. 2022, 14, 3520. [Google Scholar] [CrossRef]
- Cui, W.; Wang, T.; Wang, D.; Zhang, X. A novel sparse recovery-based space-time adaptive processing algorithm based on gridless sparse Bayesian learning for non-sidelooking airborne radar. IET Radar Sonar Navig. 2023, 17, 1380–1390. [Google Scholar] [CrossRef]
- He, T.; Tang, B.; Zhang, J.; Zhang, Y. MIMO STAP sparse dictionary construction method under off-grid condition. J. Detect. Control 2020, 42, 106–111. [Google Scholar]
- He, P.; He, S.; Yang, Z.; Huang, P. An off-grid STAP algorithm based on local mesh splitting with bistatic radar system. IEEE Signal Process. Lett. 2020, 27, 1355–1359. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Y.; Chen, S.; Wu, Y.; Hao, C. A robust STAP algorithm using two prior knowledge. Signal Process. 2022, 38, 1367–1379. [Google Scholar]
- Wang, Z.; Xie, W.; Duan, K.; Wang, Y. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar. Signal Process. 2017, 130, 159–168. [Google Scholar] [CrossRef]
- Melvin, W.L.; Guerci, J.R. Knowledge-aided signal processing: A new paradigm for radar and other advanced sensors. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 983–996. [Google Scholar] [CrossRef]
- Cui, N.; Xing, K.; Yu, Z.; Duan, K. Tensor-based sparse recovery space-time adaptive processing for large size data clutter suppression in airborne radar. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 907–922. [Google Scholar] [CrossRef]
- Xu, W.; Gao, Z.; Xu, W.; Huang, P.; Tan, W. Space-time adaptive processing with dictionary calibration based on iterative adaptive approach. J. Signal Process. 2021, 37, 2216–2226. [Google Scholar]
- Li, Z.; Zhang, Y.; He, X.; Guo, Y. Low-complexity off-grid STAP algorithm based on local search clutter subspace estimation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1862–1866. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Element number | 10 |
Pulse number | 10 |
Element spacing (m) | 0.15 |
Operating wavelength (m) | 0.3 |
Airplane velocity (m/s) | 240 |
Aircraft height (m) | 3000 |
Pulse repetition frequency (Hz) | 4000 |
μd | 4 |
μs | 4 |
Training snapshot number | 20 |
Algorithm Name | Complex Multiplication Number |
---|---|
MDC-SR-STAP | (12 + 9) Z3 + (8 + 38) Z2 + 18Z |
LMSSE-STAP | 3Z3 + (2 + 36) Z2 + 18Z |
GS-SR-STAP | (12 + 9) Z3 + (8 + 16Z2) + 6Z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Zhao, C.; Huang, P.; Xu, W.; Tan, W. A Reduced Sparse Dictionary Reconstruction Algorithm Based on Grid Selection. Electronics 2024, 13, 874. https://doi.org/10.3390/electronics13050874
Gao Z, Zhao C, Huang P, Xu W, Tan W. A Reduced Sparse Dictionary Reconstruction Algorithm Based on Grid Selection. Electronics. 2024; 13(5):874. https://doi.org/10.3390/electronics13050874
Chicago/Turabian StyleGao, Zhiqi, Caimei Zhao, Pingping Huang, Wei Xu, and Weixian Tan. 2024. "A Reduced Sparse Dictionary Reconstruction Algorithm Based on Grid Selection" Electronics 13, no. 5: 874. https://doi.org/10.3390/electronics13050874
APA StyleGao, Z., Zhao, C., Huang, P., Xu, W., & Tan, W. (2024). A Reduced Sparse Dictionary Reconstruction Algorithm Based on Grid Selection. Electronics, 13(5), 874. https://doi.org/10.3390/electronics13050874