Semi-Supervised Few-Shot Incremental Learning with k-Probabilistic Principal Component Analysis
Abstract
:1. Introduction
- It proposes a semi-supervised FSCIL framework named k-PPCAs that avoids the retraining of old classes so that catastrophic forgetting can be significantly reduced when new classes are incorporated.
- A Mahalanobis distance-based k-Means classifier is adapted for the FSCIL task, which can capture the shape information of class embeddings and classify the out-of-distribution samples to “unknown” through a low-confidence score metric.
- Performs a comprehensive comparison between the proposed method and state-of-the-art semi-supervised FSCIL methods on three popular FSCIL benchmarks: CUB200, CIFAR100, and miniImageNet. The results show that the proposed method outperforms most of the other methods.
- Conduct experiments on the large-scale dataset ImageNet-1k, which is less frequently evaluated for the FSCIL task.
Related Work
2. Materials and Methods
2.1. Probabilistic PCA Representation
2.2. k-Means Classifier with the Mahalanobis Distance (k-PPCAs)
2.3. k-PPCAs for Semi-Supervised FSCIL
Algorithm 1 Initialization with PCA |
|
Algorithm 2 k-PPCAs |
|
2.4. Computing Covariance Matrices with Running Averages
2.5. Complexity Analysis of k-PPCAs
3. Results
3.1. Datasets
3.2. Implementation Details
3.3. Evaluation Results
4. Discussion
4.1. The Number of Principal Components in PPCA
4.2. Different Shots in the Base Session
4.3. The Criteria of Extreme Values
4.4. Discussion on the Strengths of the Proposed Method
4.5. Discussion About CLIP and ImageNet
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CIL | Class Incremental Learning |
FSCIL | Few-Shot Class Incremental Learning |
SSFSCIL | Semi-Supervised Few-Shot Class-Incremental Learning |
PCA | Principal Component Analysis |
PPCA | Probabilistic Principal Component Analyzers |
CUB200 | Caltech-UCSD Birds-200-2011 |
References
- Tao, X.; Hong, X.; Chang, X.; Dong, S.; Wei, X.; Gong, Y. Few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12183–12192. [Google Scholar]
- Zhang, C.; Song, N.; Lin, G.; Zheng, Y.; Pan, P.; Xu, Y. Few-shot incremental learning with continually evolved classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12455–12464. [Google Scholar]
- Zhu, K.; Cao, Y.; Zhai, W.; Cheng, J.; Zha, Z.J. Self-promoted prototype refinement for few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6801–6810. [Google Scholar]
- Peng, C.; Zhao, K.; Wang, T.; Li, M.; Lovell, B.C. Few-shot class-incremental learning from an open-set perspective. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 382–397. [Google Scholar]
- Dong, S.; Hong, X.; Tao, X.; Chang, X.; Wei, X.; Gong, Y. Few-shot class-incremental learning via relation knowledge distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 1255–1263. [Google Scholar]
- Cui, Y.; Xiong, W.; Tavakolian, M.; Liu, L. Semi-Supervised Few-Shot Class-Incremental Learning. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 1239–1243. [Google Scholar]
- Yang, B.; Lin, M.; Liu, B.; Fu, M.; Liu, C.; Ji, R.; Ye, Q. Learnable Expansion-and-Compression Network for Few-shot Class-Incremental Learning. arXiv 2021, arXiv:2104.02281. [Google Scholar]
- Ahmad, T.; Dhamija, A.R.; Cruz, S.; Rabinowitz, R.; Li, C.; Jafarzadeh, M.; Boult, T.E. Few-Shot Class Incremental Learning Leveraging Self-Supervised Features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 3900–3910. [Google Scholar]
- Kalla, J.; Biswas, S. S3C: Self-supervised stochastic classifiers for few-shot class-incremental learning. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 432–448. [Google Scholar]
- Cui, Y.; Deng, W.; Xu, X.; Liu, Z.; Liu, Z.; Pietikäinen, M.; Liu, L. Uncertainty-guided semi-supervised few-shot class-incremental learning with knowledge distillation. IEEE Trans. Multimed. 2022, 25, 6422–6435. [Google Scholar] [CrossRef]
- Cui, Y.; Deng, W.; Chen, H.; Liu, L. Uncertainty-Aware Distillation for Semi-Supervised Few-Shot Class-Incremental Learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 14259–14272. [Google Scholar] [CrossRef]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1999, 61, 611–622. [Google Scholar] [CrossRef]
- Tipping, M.E.; Bishop, C.M. Mixtures of probabilistic principal component analyzers. Neural Comput. 1999, 11, 443–482. [Google Scholar] [CrossRef]
- Rebuffi, S.A.; Kolesnikov, A.; Sperl, G.; Lampert, C.H. icarl: Incremental classifier and representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2001–2010. [Google Scholar]
- Mensink, T.; Verbeek, J.; Perronnin, F.; Csurka, G. Distance-based image classification: Generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2624–2637. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Ng, Y.; Miyashita, D.; Maki, A.; Lin, Y.C.; Deguchi, J. Revisiting a knn-based image classification system with high-capacity storage. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 457–474. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In Proceedings of the 38th International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 8748–8763. [Google Scholar]
- Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Schmid, C.; Alahari, K. End-to-end incremental learning. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 233–248. [Google Scholar]
- Hou, S.; Pan, X.; Loy, C.C.; Wang, Z.; Lin, D. Learning a unified classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 831–839. [Google Scholar]
- Martinetz, T. A “neural-gas” network learns topologies. In Artificial Neural Networks; Elsevier: Amsterdam, The Netherlands, 1991; pp. 397–402. [Google Scholar]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the Generalized Distance in Statistics; National Institute of Science of India: Odisha, India, 1936. [Google Scholar]
- Wang, B.; Barbu, A. Scalable Learning with Incremental Probabilistic PCA. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 5615–5622. [Google Scholar]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Sun, L.; Wang, M.; Zhu, S.; Barbu, A. A novel framework for online supervised learning with feature selection. J. Nonparametr. Stat. 2024, 1–27. [Google Scholar] [CrossRef]
- Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-UCSD Birds-200-2011 Dataset; Technical Report CNS-TR-2011-001; California Institute of Technology: Pasadena, CA, USA, 2011. [Google Scholar]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2009. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Ravi, S.; Larochelle, H. Optimization as a model for few-shot learning. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Kolesnikov, A.; et al. The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 2020, 128, 1956–1981. [Google Scholar] [CrossRef]
Method | Backbone | Accuracy in Each Session (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
SS-iCaRL [6] | RN18 | 69.89 | 61.24 | 55.81 | 50.99 | 48.18 | 46.91 | 43.99 | 39.78 | 37.50 | 34.54 | 31.33 |
SS-NCM [6] | RN18 | 69.89 | 61.91 | 55.51 | 51.71 | 49.68 | 46.11 | 42.19 | 39.03 | 37.96 | 34.05 | 32.65 |
SS-NCM-CNN [6] | RN18 | 69.89 | 64.87 | 59.82 | 55.14 | 52.48 | 49.60 | 47.87 | 45.10 | 40.47 | 38.10 | 35.25 |
FeSSSS [8] | RN18+RN50 | 79.60 | 73.46 | 70.32 | 66.38 | 63.97 | 59.63 | 58.19 | 57.56 | 55.01 | 54.31 | 52.98 |
Us-KD [10] | RN18 | 74.69 | 71.71 | 69.04 | 65.08 | 63.60 | 60.96 | 59.06 | 58.68 | 57.01 | 56.41 | 55.54 |
S3C [9] | RN18 | 80.62 | 77.55 | 73.19 | 68.54 | 68.05 | 64.33 | 63.58 | 62.07 | 60.61 | 59.79 | 58.95 |
UaD-CE [11] | RN18 | 75.17 | 73.27 | 70.87 | 67.14 | 65.49 | 63.66 | 62.42 | 62.55 | 60.99 | 60.48 | 60.72 |
k-PPCAs | RN18 | 76.72 | 73.87 | 70.90 | 66.90 | 65.28 | 63.16 | 62.17 | 61.12 | 59.38 | 59.42 | 58.96 |
(0.03) | (0.27) | (0.31) | (0.50) | (0.40) | (0.44) | (0.67) | (0.65) | (0.73) | (0.68) | (0.79) | ||
k-PPCAs | CLIP-RN50x4 | 81.46 | 78.84 | 76.87 | 73.09 | 71.90 | 70.02 | 69.24 | 67.93 | 66.25 | 66.18 | 66.06 |
(0.04) | (0.26) | (0.33) | (0.66) | (0.86) | (0.74) | (0.74) | (1.13) | (1.34) | (1.35) | (1.29) | ||
k-PPCAs | CLIP-ViT-B/32 | 75.89 | 73.01 | 70.74 | 67.02 | 65.43 | 63.29 | 62.14 | 60.94 | 59.23 | 59.56 | 59.18 |
(0.03) | (0.36) | (0.48) | (0.79) | (0.76) | (0.79) | (0.82) | (0.90) | (0.93) | (0.87) | (1.20) | ||
k-PPCAs | CLIP-ViT-L/14 | 86.47 | 84.30 | 83.06 | 79.98 | 79.60 | 78.17 | 77.89 | 77.44 | 76.51 | 76.84 | 76.78 |
(0.02) | (0.13) | (0.38) | (0.75) | (0.87) | (0.98) | (0.90) | (0.84) | (0.89) | (0.90) | (1.08) |
Method | Backbone | Accuracy in Each Session (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
SS-NCM-CNN [6] | RN18 | 64.1 | 62.22 | 61.11 | 58.0 | 54.22 | 50.66 | 48.88 | 46.0 | 44.44 |
FeSSSS [8] | RN20+RN50 | 75.35 | 70.81 | 66.7 | 62.73 | 59.62 | 56.45 | 54.33 | 52.10 | 50.23 |
S3C [9] | RN20 | - | - | - | - | - | - | - | - | 53.96 |
Us-KD [10] | RN18 | 76.85 | 69.87 | 65.46 | 62.36 | 59.86 | 57.29 | 55.22 | 54.91 | 54.42 |
UaD-CE [11] | RN18 | 75.55 | 72.17 | 68.57 | 65.35 | 62.80 | 60.27 | 59.12 | 57.05 | 54.50 |
k-PPCAs | RN18 | 69.87 | 68.83 | 67.83 | 65.39 | 65.05 | 63.73 | 63.74 | 62.88 | 61.40 |
(0.07) | (0.10) | (0.33) | (0.34) | (0.34) | (0.32) | (0.32) | (0.31) | (0.28) | ||
k-PPCAs | CLIP-RN50x4 | 73.06 | 71.54 | 70.30 | 68.23 | 67.41 | 66.99 | 67.18 | 66.81 | 66.15 |
(0.07) | (0.15) | (0.24) | (0.26) | (0.17) | (0.18) | (0.15) | (0.18) | (0.15) | ||
k-PPCAs | CLIP-ViT-B/32 | 75.02 | 72.88 | 72.27 | 70.24 | 69.59 | 68.96 | 68.92 | 68.37 | 67.16 |
(0.04) | (0.16) | (0.14) | (0.09) | (0.09) | (0.10) | (0.16) | (0.10) | (0.14) | ||
k-PPCAs | CLIP-ViT-L/14 | 85.43 | 84.12 | 83.56 | 82.01 | 81.89 | 81.82 | 81.68 | 81.62 | 80.83 |
(0.04) | (0.06) | (0.10) | (0.12) | (0.13) | (0.10) | (0.10) | (0.11) | (0.11) |
Method | Backbone | Accuracy in Each Session (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
SS-NCM-CNN [6] | RN18 | 62.88 | 60.88 | 57.63 | 52.8 | 50.66 | 48.28 | 45.27 | 41.65 | 41.21 |
Us-KD [10] | RN18 | 72.35 | 67.22 | 62.41 | 59.85 | 57.81 | 55.52 | 52.64 | 50.86 | 50.47 |
UaD-CE [11] | RN18 | 72.35 | 66.91 | 62.13 | 59.89 | 57.41 | 55.52 | 53.26 | 51.46 | 50.52 |
S3C [9] | RN18 | - | - | - | - | - | - | - | - | 52.14 |
FeSSSS [8] | RN18+RN50 | 81.5 | 77.04 | 72.92 | 69.56 | 67.27 | 64.34 | 62.07 | 60.55 | 58.87 |
k-PPCAs | RN18 | 71.50 | 67.02 | 63.64 | 61.14 | 58.94 | 56.66 | 54.42 | 53.16 | 52.17 |
(0.04) | (0.12) | (0.08) | (0.10) | (0.05) | (0.20) | (0.30) | (0.24) | (0.22) | ||
k-PPCAs | CLIP-RN50 | 76.82 | 76.17 | 75.06 | 75.03 | 75.01 | 74.61 | 73.75 | 73.97 | 74.19 |
(0.07) | (0.14) | (0.22) | (0.21) | (0.22) | (0.23) | (0.20) | (0.18) | (0.17) | ||
k-PPCAs | CLIP-RN50x4 | 81.57 | 81.28 | 80.12 | 79.98 | 79.97 | 79.44 | 78.60 | 78.92 | 79.02 |
(0.05) | (0.04) | (0.11) | (0.11) | (0.11) | (0.07) | (0.08) | (0.07) | (0.06) | ||
k-PPCAs | CLIP-ViT-B/32 | 83.51 | 82.99 | 81.97 | 81.51 | 81.63 | 81.20 | 80.39 | 80.62 | 80.68 |
(0.05) | (0.15) | (0.18) | (0.51) | (0.47) | (0.45) | (0.45) | (0.42) | (0.39) | ||
k-PPCAs | CLIP-ViT-L/14 | 91.05 | 90.86 | 89.78 | 89.84 | 89.88 | 89.44 | 88.72 | 88.85 | 88.91 |
(0.05) | (0.11) | (0.09) | (0.09) | (0.09) | (0.09) | (0.12) | (0.12) | (0.11) |
Method | Accuracy in Each Session (%) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
k-Means | 53.68 | 54.99 | 54.03 | 52.81 | 51.49 | 51.93 |
(CLIP-RN50x4) | (0.39) | (0.51) | (0.49) | (0.46) | (0.19) | (0.23) |
k-PPCAs | 57.05 | 59.27 | 59.44 | 59.05 | 58.10 | 58.44 |
(CLIP-RN50x4) | (0.27) | (0.33) | (0.52) | (0.44) | (0.32) | (0.27) |
Number | Accuracy in Each Session (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
of PC | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0 PC | 62.46 | 62.95 | 61.96 | 62.22 | 62.49 | 62.34 | 61.84 | 62.15 | 62.37 |
k-Means | (1.05) | (0.97) | (1.07) | (0.99) | (0.91) | (1.03) | (0.99) | (1.41) | (0.99) |
5 PC | 73.19 | 73.47 | 72.82 | 73.05 | 73.44 | 73.30 | 72.91 | 73.39 | 73.92 |
(1.09) | (1.05) | (1.01) | (0.89) | (0.90) | (0.87) | (0.84) | (0.82) | (0.77) | |
10 PC | 73.96 | 74.28 | 73.68 | 73.93 | 74.32 | 74.12 | 73.63 | 74.22 | 74.69 |
(1.29) | (1.17) | (1.13) | (1.08) | (1.03) | (0.95) | (0.93) | (0.90) | (0.83) | |
20 PC | 74.00 | 74.24 | 73.44 | 73.71 | 74.20 | 73.87 | 73.27 | 73.89 | 74.42 |
(1.25) | (1.13) | (1.02) | (1.00) | (0.97) | (0.83) | (0.94) | (0.91) | (0.87) | |
30 PC | 73.92 | 74.12 | 73.22 | 73.53 | 74.05 | 73.60 | 72.96 | 73.58 | 74.11 |
(1.31) | (1.17) | (1.15) | (1.13) | (1.11) | (0.91) | (0.89) | (0.85) | (0.82) | |
50 PC | 73.87 | 74.07 | 73.10 | 72.97 | 73.45 | 72.87 | 72.04 | 72.76 | 73.31 |
(1.26) | (1.15) | (1.07) | (1.23) | (1.21) | (1.17) | (1.05) | (1.01) | (0.97) | |
All PC | 62.46 | 62.95 | 61.96 | 62.24 | 62.51 | 62.34 | 61.85 | 62.15 | 62.51 |
Full Cov. | (1.03) | (0.94) | (1.06) | (0.97) | (0.89) | (1.01) | (0.97) | (1.38) | (1.14) |
Accuracy in Each Session (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
5-shot | 73.99 | 74.33 | 73.69 | 73.96 | 74.34 | 74.15 | 73.68 | 74.27 | 74.76 |
(CLIP-RN50x4) | (1.16) | (1.07) | (1.05) | (0.96) | (0.93) | (0.86) | (0.85) | (0.82) | (0.76) |
all-labeled | 81.57 | 81.28 | 80.12 | 79.98 | 79.97 | 79.44 | 78.60 | 78.92 | 79.02 |
(CLIP-RN50x4) | (0.05) | (0.04) | (0.11) | (0.11) | (0.11) | (0.07) | (0.08) | (0.07) | (0.06) |
Accuracy in Each Session (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
% | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
0 | 50 | 73.02 | 73.17 | 72.32 | 72.55 | 73.00 | 72.75 | 72.22 | 72.74 | 73.23 |
(1.36) | (1.26) | (1.12) | (1.00) | (0.94) | (0.93) | (0.91) | (0.83) | (0.80) | ||
1 | 16 | 73.74 | 74.03 | 73.37 | 73.60 | 73.99 | 73.79 | 73.33 | 73.83 | 74.35 |
(1.30) | (1.17) | (1.12) | (0.99) | (0.95) | (0.92) | (0.89) | (0.85) | (0.78) | ||
1.64 | 5 | 73.97 | 74.29 | 73.66 | 73.91 | 74.30 | 74.12 | 73.66 | 74.21 | 74.73 |
(1.09) | (0.99) | (0.98) | (0.91) | (0.87) | (0.80) | (0.76) | (0.73) | (0.70) | ||
1.96 | 2.5 | 73.99 | 74.33 | 73.69 | 73.96 | 74.34 | 74.15 | 73.68 | 74.27 | 74.76 |
(1.16) | (1.07) | (1.05) | (0.96) | (0.93) | (0.86) | (0.85) | (0.82) | (0.76) | ||
2.56 | 0.5 | 73.96 | 74.28 | 73.68 | 73.93 | 74.32 | 74.12 | 73.63 | 74.22 | 74.69 |
(1.29) | (1.17) | (1.13) | (1.08) | (1.03) | (0.95) | (0.93) | (0.90) | (0.83) | ||
∞ | 0 | 73.97 | 74.31 | 73.70 | 73.97 | 74.33 | 74.14 | 73.67 | 74.25 | 74.72 |
(1.11) | (1.03) | (0.98) | (0.91) | (0.89) | (0.83) | (0.82) | (0.79) | (0.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.; Barbu, A. Semi-Supervised Few-Shot Incremental Learning with k-Probabilistic Principal Component Analysis. Electronics 2024, 13, 5000. https://doi.org/10.3390/electronics13245000
Han K, Barbu A. Semi-Supervised Few-Shot Incremental Learning with k-Probabilistic Principal Component Analysis. Electronics. 2024; 13(24):5000. https://doi.org/10.3390/electronics13245000
Chicago/Turabian StyleHan, Ke, and Adrian Barbu. 2024. "Semi-Supervised Few-Shot Incremental Learning with k-Probabilistic Principal Component Analysis" Electronics 13, no. 24: 5000. https://doi.org/10.3390/electronics13245000
APA StyleHan, K., & Barbu, A. (2024). Semi-Supervised Few-Shot Incremental Learning with k-Probabilistic Principal Component Analysis. Electronics, 13(24), 5000. https://doi.org/10.3390/electronics13245000