Maneuvering Trajectory Synthetic Aperture Radar Processing Based on the Decomposition of Transfer Functions in the Frequency Domain Using Average Blurred Edge Width Assessment
Abstract
:1. Introduction
2. Principles and Methods
2.1. Two-Dimensional Matched Filtering
2.2. Mismatch of the Matched Filter
2.3. ABEW
- (1)
- The size of the input SAR image is [M, N], and the calculation window size is defined as 64 pixels × 64 pixels.
- (2)
- Calculate the information entropy within the window at each pixel position of the input image, and calculate the mean information entropy .
- (3)
- Count the points in the image where , define this point as the salient point, and calculate the number of salient points.
- (4)
- If , then the mean , and return to step (3). Otherwise, terminate the operation and output the SAR salient area image.
2.4. Decomposition of Transfer Functions in the Frequency Domain
3. Experimental Results
3.1. SAR IQA Using ABEW
3.2. Maneuvering Trajectory SAR Processing Using the Decomposition of Transfer Functions in the Frequency Domain
- (1)
- The search range is , the number of search points is , the ABEW error accuracy is , the number of searches is , and is set. The ideal flight parameters are used as the initial value of the coefficient , and the ABEW value of the filtered imaging result at this time is calculated and recorded as .
- (2)
- The current coefficient search range is set to , the coefficient values are divided within the range into parts, the ABEW value of the imaging result is calculated after the echo data have been processed by the filter under the current coefficient, and the minimum value of ABEW and the corresponding coefficient value are found, recorded as and , respectively.
- (3)
- If , set . If , then , and return to step (2); otherwise, terminate the operation and output .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | synthetic aperture radar |
ABEW | average blurred edge width |
IQA | imaging quality assessment |
UAV | unmanned aerial vehicle |
POSP | principle of stationary phase |
GPS | global positioning satellite |
IMU | inertial measurement unit |
SSIM | structural similarity |
TSSIM | texture-based SSIM |
RCM | range cell migration |
BEPs | blurred edge points |
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; Van Schie, B. Ship surveillance with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1092–1103. [Google Scholar] [CrossRef]
- Tsokas, A.; Rysz, M.; Pardalos, P.M.; Dipple, K. SAR data applications in earth observation: An overview. Expert Syst. Appl. 2022, 205, 117342. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, C.; Dai, J.; Fan, J.; Qin, Y.; Ye, Y. R 2 FD 2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar]
- Ye, Y.; Zhu, B.; Tang, T.; Yang, C.; Xu, Q.; Zhang, G. A robust multimodal remote sensing image registration method and system using steerable filters with first-and second-order gradients. ISPRS J. Photogramm. Remote Sens. 2022, 188, 331–350. [Google Scholar] [CrossRef]
- Aguasca, A.; Acevo-Herrera, R.; Broquetas, A.; Mallorqui, J.J.; Fabregas, X. ARBRES: Light-weight CW/FM SAR sensors for small UAVs. Sensors 2013, 13, 3204–3216. [Google Scholar] [CrossRef] [PubMed]
- Acevo-Herrera, R.; Aguasca, A.; Mallorquí, J.J.; Fàbregas, X. High-compacted FM-CW SAR for boarding on small UAVs. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. II-543–II-546. [Google Scholar]
- Lort, M.; Aguasca, A.; Lopez-Martinez, C.; Marín, T.M. Initial evaluation of SAR capabilities in UAV multicopter platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 127–140. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, Z.; Xing, M.-d.; Yang, L.; Bao, Z. A robust motion compensation approach for UAV SAR imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3202–3218. [Google Scholar] [CrossRef]
- Eldhuset, K. A new fourth-order processing algorithm for spaceborne SAR. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 824–835. [Google Scholar] [CrossRef]
- Eldhuset, K. Ultra high resolution spaceborne SAR processing. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 370–378. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital processing of synthetic aperture radar data. Artech House 2005, 1, 108–110. [Google Scholar]
- Kennedy, T.A. Strapdown inertial measurement units for motion compensation for synthetic aperture radars. IEEE Aerosp. Electron. Syst. Mag. 1988, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Long, M.; Xiaoling, Z. Streaming BP for non-linear motion compensation SAR imaging based on GPU. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2035–2050. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Bennett, J.R.; Cumming, I.G. A digital processor for the production of SEASAT synthetic aperture radar imagery. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 27–29 June 1979. Paper 316. [Google Scholar]
- Curlander, J.; Wu, C.; Pang, A. Automated preprocessing of spaceborne SAR data. In Proceedings of the 1982 International Geoscience and Remote Sensing Symposium, Munich, Germany, 1–4 June 1982. [Google Scholar]
- Carra, W.; Goodman, R.; Majewski, R. Spotlight Synthetic Aperture Radar-Signal Processing Algorithm; Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- Jakowatz, C.V.; Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Thompson, P.A. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach: A Signal Processing Approach; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Eldhuset, K. High-resolution spaceborne SAR processing using the decomposed transfer function. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2187–2198. [Google Scholar] [CrossRef]
- Nolan, A.R.; Goley, G.S.; Bakich, M. Performance estimation of SAR using NIIRS techniques. In Proceedings of the Algorithms for Synthetic Aperture Radar Imagery XIX, Baltimore, MD, USA, 25–26 April 2012; pp. 248–258. [Google Scholar]
- Pestel-Schiller, U.; Ostermann, J. Subjective evaluation of compressed SAR images using JPEG and HEVC intra coding: Sometimes, compression improves usability. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 26–28 September 2018; pp. 154–157. [Google Scholar]
- Jiao, S.; Dong, W. SAR image quality assessment based on SSIM using textural feature. In Proceedings of the 2013 Seventh International Conference on Image and Graphics, Qingdao, China, 26–28 July 2013; pp. 281–286. [Google Scholar]
- Lu, X.; Sun, H. Parameter assessment for SAR image quality evaluation system. In Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 58–60. [Google Scholar]
- Yao, S.; Lei, G.; Ren, Z. Study on missile-borne SAR imaging quality assessment based on global features. In Proceedings of the 2022 2nd International Conference on Computer Graphics, Image and Virtualization (ICCGIV), Chongqing, China, 23–25 September 2022; pp. 124–129. [Google Scholar]
- Ferzli, R.; Karam, L.J. A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 2009, 18, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Narvekar, N.D.; Karam, L.J. A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 2011, 20, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Gilles, S. Robust Description and Matching of Images. Ph.D. Thesis, Department of Engineering Science, University of Oxford, Oxford, UK, 1998. [Google Scholar]
Parameter | Value |
---|---|
Speed of light () | 3 × 108 m/s |
Wavelength () | 0.03125 m |
Signal bandwidth () | 200 MHz |
Pulse duration () | 1 us |
Pulse repeat frequency () | 1382.4 Hz |
Sampling frequency () | 1 GHz |
Flight altitude () (ideal) | 3000 m |
Platform velocity () (ideal) | 300 m/s |
Rand velocity error along the altitude direction | (−1, 1) m/s |
Rand velocity error along the azimuth direction | (−10, 10) m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Wang, D.; Sun, F.; Wang, K. Maneuvering Trajectory Synthetic Aperture Radar Processing Based on the Decomposition of Transfer Functions in the Frequency Domain Using Average Blurred Edge Width Assessment. Electronics 2024, 13, 4100. https://doi.org/10.3390/electronics13204100
Yang C, Wang D, Sun F, Wang K. Maneuvering Trajectory Synthetic Aperture Radar Processing Based on the Decomposition of Transfer Functions in the Frequency Domain Using Average Blurred Edge Width Assessment. Electronics. 2024; 13(20):4100. https://doi.org/10.3390/electronics13204100
Chicago/Turabian StyleYang, Chenguang, Duo Wang, Fukun Sun, and Kaizhi Wang. 2024. "Maneuvering Trajectory Synthetic Aperture Radar Processing Based on the Decomposition of Transfer Functions in the Frequency Domain Using Average Blurred Edge Width Assessment" Electronics 13, no. 20: 4100. https://doi.org/10.3390/electronics13204100
APA StyleYang, C., Wang, D., Sun, F., & Wang, K. (2024). Maneuvering Trajectory Synthetic Aperture Radar Processing Based on the Decomposition of Transfer Functions in the Frequency Domain Using Average Blurred Edge Width Assessment. Electronics, 13(20), 4100. https://doi.org/10.3390/electronics13204100