Spin Current Enhancement Using Double-Ferromagnetic-Layer Structure for Magnetoelectric Spin-Orbit Logic Device
Abstract
:1. Introduction
2. Review of the Existing Structure
2.1. Operating Mechanism of the Input Portion of MESO
2.2. Operating Mechanism of the Output Portion of MESO
2.3. Circuit Modeling
3. Double-FM-Layer Structure for MESO Device
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, J.R. The Quantum Limit to Moore’s Law. Proc. IEEE 2008, 96, 1247–1248. [Google Scholar] [CrossRef]
- Nikonov, D.E.; Young, I.A. Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking. Proc. IEEE 2013, 101, 2498–2533. [Google Scholar] [CrossRef]
- Theis, T.N.; Solomon, P.M. It’s Time to Reinvent the Transistor! Science 2010, 327, 1600–1601. [Google Scholar] [CrossRef]
- Nikonov, D.E.; Young, I.A. Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 2015, 1, 3–11. [Google Scholar] [CrossRef]
- Manipatruni, S.; Nikonov, D.E.; Lin, C.-C.; Gosavi, T.A.; Liu, H.; Prasad, B.; Huang, Y.-L.; Bonturim, E.; Ramesh, R.; Young, I.A. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 2019, 565, 35–42. [Google Scholar] [CrossRef]
- Seabaugh, A.C.; Zhang, Q. Low-Voltage Tunnel Transistors for Beyond CMOS Logic. Proc. IEEE 2010, 98, 2095–2110. [Google Scholar] [CrossRef]
- Rojas-Sánchez, J.-C.; Oyarzún, S.; Fu, Y.; Marty, A.; Vergnaud, C.; Gambarelli, S.; Vila, L.; Jamet, M.; Ohtsubo, Y.; Taleb-Ibrahimi, A.; et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 2016, 116, 096602. [Google Scholar] [CrossRef]
- Sinova, J.; Valenzuela, S.O.; Wunderlich, J.; Back, C.H.; Jungwirth, T. Spin hall effects. Rev. Mod. Phys. 2015, 87, 1213. [Google Scholar] [CrossRef]
- Rojas-Sánchez, J.C.; Reyren, N.; Laczkowski, P.; Savero, W.; Attané, J.P.; Deranlot, C.; Jaffrès, H. Spin pumping and inverse spin Hall efect in platinum: Te essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 2014, 112, 106602. [Google Scholar] [CrossRef]
- Zhang, S.; Fert, A. Conversion between spin and charge currents with topological insulators. Phys. Rev. B 2016, 94, 184423. [Google Scholar] [CrossRef]
- Li, C.; Cai, L.; Wang, S.; Yang, X.; Cui, H.; Wei, B.; Liu, B. Performance Optimization of All-Spin Logic Device Based on Silver Interconnects and Asymmetric Tunneling Layer. IEEE Trans. Magn. 2018, 54, 1–6. [Google Scholar] [CrossRef]
- Liang, Z.; Mankalale, M.G.; Hu, J.; Zhao, Z.; Wang, J.-P.; Sapatnekar, S.S. Performance Characterization and Majority Gate Design for MESO-Based Circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 2018, 4, 51–59. [Google Scholar] [CrossRef]
- Liu, H.; Manipatruni, S.; Morris, D.H.; Vaidyanathan, K.; Nikonov, D.E.; Karnik, T.; Young, I.A. Synchronous Circuit Design With Beyond-CMOS Magnetoelectric Spin–Orbit Devices Toward 100-mV Logic. IEEE J. Explor. Solid-State Comput. Devices Circuits 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Lin, C.-C.; Nikonov, D.E.; Young, I.A. Differential Electrically Insulated Magnetoelectric Spin-Orbit Logic Circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 2021, 7, 18–28. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Sun, N.X. Magnetoelectric materials and devices. APL Mater. 2021, 9, 041114. [Google Scholar] [CrossRef]
- Cherifi, R.O.; Ivanovskaya, V.; Phillips, L.C.; Zobelli, A.; Infante, I.C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P.R.; Guiblin, N.; et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 2014, 13, 345–351. [Google Scholar] [CrossRef]
- Ohno, H.; Chiba, D.; Matsukura, F.; Omiya, T.; Abe, E.; Dietl, T.; Ohno, Y.; Ohtani, K. Electric-field control of ferromagnetism. Nature 2000, 408, 944–946. [Google Scholar] [CrossRef]
- Manipatruni, S.; Nikonov, D.E.; Lin, C.-C.; Prasad, B.; Huang, Y.-L.; Damodaran, A.R.; Chen, Z.; Ramesh, R.; Young, I.A. Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system. Sci. Adv. 2018, 4, eaat4229. [Google Scholar] [CrossRef]
- Manipatruni, S.; Nikonov, D.E.; Ramesh, R.; Li, H.; Young, I.A. Spin-Orbit Logic With Magnetoelectric Nodes: A Scalable Charge Mediated Nonvolatile Spintronic Logic. 2017. Available online: https://arxiv.org/abs/1512.05428v2 (accessed on 18 May 2024).
- Mazin, I.I. How to define and calculate the degree of spin polarization in ferromagnets. Phys. Rev. Lett. 1999, 83, 1427–1430. [Google Scholar] [CrossRef]
- Kumar, A.; Fulara, H.; Khymyn, R.; Litvinenko, A.; Zahedinejad, M.; Rajabali, M.; Zhao, X.; Behera, N.; Houshang, A.; Awad, A.A.; et al. Robust Mutual Synchronization in Long Spin Hall Nano-oscillator Chains. Nano Lett. 2023, 23, 6720–6726. [Google Scholar] [CrossRef]
- Ren, H.; Zheng, X.Y.; Channa, S.; Wu, G.; O’mahoney, D.A.; Suzuki, Y.; Kent, A.D. Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures. Nat. Commun. 2023, 14, 1406. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, Z.; Zhang, Y.; Sun, J.; Lin, K.; Zhang, K.; Feng, X.; Chen, L.; Wang, J.; Wang, G.; et al. 3D Ferrimagnetic Device for Multi-Bit Storage and Efficient In-Memory Computing. IEEE Electron Device Lett. 2021, 42, 152–155. [Google Scholar] [CrossRef]
- Kim, S.K.; Beach, G.S.D.; Lee, K.-J.; Ono, T.; Rasing, T.; Yang, H. Ferrimagnetic spintronics. Nat. Mater. 2022, 21, 24–34. [Google Scholar] [CrossRef]
- Chowdhury, N.; Khan, K.I.A.; Bangar, H.; Gupta, P.; Yadav, R.S.; Agarwal, R.; Kumar, A.; Muduli, P.K. Kagome Magnets: The Emerging Materials for Spintronic Memories. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2023, 93, 477–495. [Google Scholar] [CrossRef]
- Cheng, E.; Yan, L.; Shi, X.; Lou, R.; Fedorov, A.; Behnami, M.; Yuan, J.; Yang, P.; Wang, B.; Cheng, J.-G.; et al. Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi. Nat. Commun. 2024, 15, 1467. [Google Scholar] [CrossRef]
- Itoh, S.; Endoh, Y.; Yokoo, T.; Ibuka, S.; Park, J.-G.; Kaneko, Y.; Takahashi, K.S.; Tokura, Y.; Nagaosa, N. Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3. Nat. Commun. 2016, 7, 11788. [Google Scholar] [CrossRef]
- Hong, S.; Sayed, S.; Datta, S. Spin Circuit Representation for the Spin Hall Effect. IEEE Trans. Nanotechnol. 2016, 15, 225–236. [Google Scholar] [CrossRef]
Symbol | Description | Value |
---|---|---|
Saturation magnetization | 1.0 × 106 A/m | |
Demagnetizing factors | (0, 0, 0.8) | |
Damping constant | 0.007 | |
In-plane anisotropy | 0 | |
Polarization efficiency | 0.8 | |
Field-like torque coefficient | 0 | |
VCMA coefficient | 60 fj/V·m | |
Initial state (±1) | +1 for FM 1 and −1 for FM 2 | |
Magnet thickness | 1 nm | |
Magnet width | 20 nm | |
Magnet length | 40 nm | |
Spin flip length | 35 nm | |
Conductance | 0.5 × 1015 S/m | |
Conductance to the perpendicular spin | 3.26 S | |
Conductance | 4.0 × 105 S/m | |
Spin flip length | 1 nm | |
Damping constant | 0.3 | |
Layer thickness | 1 nm | |
Layer width | 60 nm | |
Layer length | 35 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishdorj, B.; Sharif, S.; Na, T. Spin Current Enhancement Using Double-Ferromagnetic-Layer Structure for Magnetoelectric Spin-Orbit Logic Device. Electronics 2024, 13, 4085. https://doi.org/10.3390/electronics13204085
Ishdorj B, Sharif S, Na T. Spin Current Enhancement Using Double-Ferromagnetic-Layer Structure for Magnetoelectric Spin-Orbit Logic Device. Electronics. 2024; 13(20):4085. https://doi.org/10.3390/electronics13204085
Chicago/Turabian StyleIshdorj, Bayartulga, Shumaila Sharif, and Taehui Na. 2024. "Spin Current Enhancement Using Double-Ferromagnetic-Layer Structure for Magnetoelectric Spin-Orbit Logic Device" Electronics 13, no. 20: 4085. https://doi.org/10.3390/electronics13204085
APA StyleIshdorj, B., Sharif, S., & Na, T. (2024). Spin Current Enhancement Using Double-Ferromagnetic-Layer Structure for Magnetoelectric Spin-Orbit Logic Device. Electronics, 13(20), 4085. https://doi.org/10.3390/electronics13204085