Steady-State Temperature-Sensitive Electrical Parameters’ Characteristics of GaN HEMT Power Devices
Abstract
:1. Introduction
2. Measurement Method of Steady-State TESPs
2.1. Saturation Voltage with Low Current Injection
2.2. Threshold Voltage
2.3. Body-like Diode Voltage
3. Experimental Investigation
3.1. Introduction of Experimental Platform
3.2. Drive Circuit
3.3. Constant Current Circuit
3.4. Conditioning Circuit
4. Experimental Results and Analysis
4.1. Characteristics of Saturation Voltage with Low Current Injection
4.2. Characteristics of Threshold Voltage
4.3. Characteristics of Body-like Diode Voltage
4.4. Stability of TSEPs’ Characteristics under Temperature Cycles
5. Conclusions
- The saturation voltage with low current injection as a TSEP still has good temperature-sensitive characteristics, showing good linearity and stability in GaN HEMT. Its sensitivity is influenced by both the injection current and gate voltage. Overall, it has potential value in the field of temperature measurement.
- The threshold and body-like diode voltage as TSEPs exhibit significant variations for different devices. In particular, for some GaN HEMT, the stability of the threshold voltage is not ideal, which needs to be considered in applications.
- Compared to Si and SiC devices, the sensitivity of TSEPs in GaN HEMT is generally lower, especially saturation voltage with low current injection, which poses higher challenges to their application in junction temperature monitoring.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonzalez, J.O.; Wu, R.; Jahdi, S.; Alatise, O. Performance and Reliability Review of 650 V and 900 V Silicon and SiC Devices: MOSFETs, Cascode JFETs and IGBTs. IEEE Trans. Ind. Electron. 2020, 67, 7375–7385. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, J.; Liu, Y.; Wang, K. Fault-Tolerance Wide Voltage Conversion Gain DC/DC Converter for More Electric Aircraft. Chin. J. Aeronaut. 2023, 36, 420–429. [Google Scholar] [CrossRef]
- Gareau, J.; Hou, R.; Emadi, A. Review of Loss Distribution, Analysis, and Measurement Techniques for GaN HEMTs. IEEE Trans. Power Electron. 2020, 35, 7405–7418. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, Y.; Wang, K.; Liu, J.; Vilathgamuwa, D.M. High Transformer Utilization Ratio and High Voltage Conversion Gain Flyback Converter for Photovoltaic Application. IEEE Trans. Ind. Appl. 2023, 1–13. [Google Scholar] [CrossRef]
- Zhu, B.; Zeng, Q.; Chen, Y.; Zhao, Y.; Liu, S. A Dual-Input High Step-Up DC/DC Converter With ZVT Auxiliary Circuit. IEEE Trans. Energy Convers. 2019, 34, 161–169. [Google Scholar] [CrossRef]
- Suganuma, K. Power Semiconductor Devices; The Nikkan Kogyo Shimbun: Tokyo, Japan, 2014; ISBN 978-4-526-07339-7. [Google Scholar]
- Yang, Y.; Zhang, P. In Situ Insulated Gate Bipolar Transistor Junction Temperature Estimation Method via a Bond Wire Degradation Independent Parameter Turn-OFF Vce Overshoot. IEEE Trans. Ind. Electron. 2021, 68, 10118–10129. [Google Scholar] [CrossRef]
- Mandeya, R.; Chen, C.; Pickert, V.; Naayagi, R.T. Prethreshold Voltage as a Low-Component Count Temperature Sensitive Electrical Parameter Without Self-Heating. IEEE Trans. Power Electron. 2018, 33, 2787–2791. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, L.; Sun, P.; Du, X. Monitoring Bond Wire Defects of IGBT Module Using Module Transconductance. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 2201–2211. [Google Scholar] [CrossRef]
- Deng, E.; Borucki, L.; Lutz, J. Correction of Delay-Time-Induced Maximum Junction Temperature Offset During Electrothermal Characterization of IGBT Devices. IEEE Trans. Power Electron. 2021, 36, 2564–2573. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, W.; Wu, J. An Improved Electro-Thermal Model to Estimate the Junction Temperature of IGBT Module. Electronics 2019, 8, 1066. [Google Scholar] [CrossRef]
- Baker, N.; Liserre, M.; Dupont, L.; Avenas, Y. Improved Reliability of Power Modules: A Review of Online Junction Temperature Measurement Methods. IEEE Ind. Electron. Mag. 2014, 8, 17–27. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, L.; Sun, P.; Du, X. Monitoring Bond Wires Fatigue of Multichip IGBT Module Using Time Duration of the Gate Charge. IEEE Trans. Power Electron. 2021, 36, 888–897. [Google Scholar] [CrossRef]
- Bagnall, K.R.; Moore, E.A.; Badescu, S.C.; Zhang, L.; Wang, E.N. Simultaneous Measurement of Temperature, Stress, and Electric Field in GaN HEMTs with Micro-Raman Spectroscopy. Rev. Sci. Instrum. 2017, 88, 113111. [Google Scholar] [CrossRef] [PubMed]
- Isa, R.; Mirza, J.; Ghafoor, S.; Mustafa Khan, M.Z.; Qureshi, K.K. Junction Temperature Optical Sensing Techniques for Power Switching Semiconductors: A Review. Micromachines 2023, 14, 1636. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Du, M.; Wei, K.; Hurley, W.G. An Adaptive Thermal Equivalent Circuit Model for Estimating the Junction Temperature of IGBTs. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 392–403. [Google Scholar] [CrossRef]
- Zhou, Z.; Sui, Y.; Zhang, X.; Tong, C.; Zheng, P.; Zhu, M. IGBT Temperature Field Monitoring Based on Reduced-Order Model. CES Trans. Electr. Mach. Syst. 2023, 7, 129–136. [Google Scholar] [CrossRef]
- An, T.; Zhou, R.; Qin, F.; Dai, Y.; Gong, Y.; Chen, P. Comparative Study of the Parameter Acquisition Methods for the Cauer Thermal Network Model of an IGBT Module. Electronics 2023, 12, 1650. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Z.; Buttay, C.; Ngo, K.D.T.; Lu, G.-Q. Improved Measurement Accuracy for Junction-to-Case Thermal Resistance of GaN HEMT Packages by Gate-to-Gate Electrical Resistance and Stacking Thermal Interface Materials. IEEE Trans. Power Electron. 2022, 37, 6285–6289. [Google Scholar] [CrossRef]
- Yang, F.; Pu, S.; Xu, C.; Akin, B. Turn-on Delay Based Real-Time Junction Temperature Measurement for SiC MOSFETs With Aging Compensation. IEEE Trans. Power Electron. 2021, 36, 1280–1294. [Google Scholar] [CrossRef]
- Li, X.; Feng, S.; Liu, C.; Zhang, Y.; Bai, K.; Xiao, Y.; Zheng, X.; He, X.; Pan, S.; Lin, G.; et al. A Drain–Source Connection Technique: Thermal Resistance Measurement Method for GaN HEMTs Using TSEP at High Voltage. IEEE Trans. Electron Devices 2020, 67, 5454–5459. [Google Scholar] [CrossRef]
- Shan, Y.; Gao, W.; Huang, Z.; Kuang, W.; Wu, Z.; Zhang, B. Test Methods and Principles of Thermal Resistance for GaN HEMT Power Devices. In Proceedings of the 2020 21st International Conference on Electronic Packaging Technology, Guangzhou, China, 12–15 August 2020; pp. 1–4. [Google Scholar]
- Pan, S.; Feng, S.; Zheng, X.; He, X.; Li, X.; Bai, K. Effects of Temperature and Bias Voltage on Electron Transport Properties in GaN High-Electron-Mobility Transistors. IEEE Trans. Device Mater. Reliab. 2021, 21, 494–499. [Google Scholar] [CrossRef]
- McDonald, T.; Butler, S.W. Progress and Current Topics of JEDEC JC-70.1 Power GaN Device Quality and Reliability Standards Activity: Or: What Is the Avalanche Capability of Your GaN Transistor? In Proceedings of the 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 21–25 March 2021; pp. 1–6. [Google Scholar]
- Hedayati, M.H.; Wang, J.; Dymond, H.C.P.; Liu, D.; Stark, B.H. Overtemperature Protection Circuit for GaN Devices Using a Di/Dt Sensor. IEEE Trans. Power Electron. 2021, 36, 7417–7428. [Google Scholar] [CrossRef]
- Sharma, K.; Muñoz Barón1, K.; Ruthardt, J.; Kallfass, I. Characterisation of the Junction Temperature of Gallium-Nitride Power Devices via Quasi-Threshold Voltage as Temperature Sensitive Electrical Parameter. In Proceedings of the 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020), Online, 15–17 December 2020; Volume 2020, pp. 932–936. [Google Scholar]
- Franke, J.; Zeng, G.; Winkler, T.; Lutz, J. Power Cycling Reliability Results of GaN HEMT Devices. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 467–470. [Google Scholar]
- Zheng, X.; Feng, S.; Zhang, Y.; Li, J. Evaluation of the Schottky Contact Degradation on the Temperature Transient Measurements in GaN HEMTs. IEEE Trans. Electron Devices 2018, 65, 1734–1738. [Google Scholar] [CrossRef]
- Borghese, A.; Riccio, M.; Longobardi, G.; Maresca, L.; Breglio, G.; Irace, A. Gate Leakage Current Sensing for in Situ Temperature Monitoring of P-GaN Gate HEMTs. Microelectron. Reliab. 2020, 114, 113762. [Google Scholar] [CrossRef]
- IEC60747-9; Semiconductor Devices Discrete Devices Part 9: Insluated-Gate Biploar Transistors (IGBTs). International Electrotechnical Commission: Geneva, Switzerland, 2007; pp. 60747–60749.
- Rashmi; Kranti, A.; Haldar, S.; Gupta, R.S. An Accurate Charge Control Model for Spontaneous and Piezoelectric Polarization Dependent Two-Dimensional Electron Gas Sheet Charge Density of Lattice-Mismatched AlGaN/GaN HEMTs. Solid-State Electron. 2002, 46, 621–630. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K.; Tokekar, S. Thermal Model for Dc Characteristics of Algan/Gan Hemts Including Self-Heating Effect and Non-Linear Polarization. Microelectron. J. 2008, 39, 1181–1188. [Google Scholar] [CrossRef]
- Huang, A. Infineon OptiMOSTMPower MOSFET Datasheet Explanation. 2012. Available online: https://www.infineon.com/dgdl/Infineon-MOSFET_OptiMOS_datasheet_explanation-AN-v01_00-EN.pdf?fileId=db3a30433b47825b013b6b8c6a3424c4 (accessed on 16 March 2022).
- Rashmi; Kranti, A.; Haldar, S.; Gupta, M.; Gupta, R.S. Comprehensive Analysis of Small-Signal Parameters of Fully Strained and Partially Relaxed High Al-Content Lattice Mismatched Al/Sub m/Ga/Sub 1-m/N/GaN HEMTs. IEEE Trans. Microw. Theory Tech. 2003, 51, 607–617. [Google Scholar] [CrossRef]
- Alim, M.A.; Rezazadeh, A.A.; Gaquiere, C. Temperature Dependence of the Threshold Voltage of AlGaN/GaN/SiC High Electron Mobility Transistors. Semicond. Sci. Technol. 2016, 31, 125016. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.; Ozpineci, B. Application-Based Review of GaN HFETs. In Proceedings of the 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 13–15 October 2014; pp. 24–29. [Google Scholar]
- González, J.A.O.; Alatise, O. A Novel Non-Intrusive Technique for BTI Characterization in SiC Mosfets. IEEE Trans. Power Electron. 2019, 34, 5737–5747. [Google Scholar] [CrossRef]
- Chen, H. Signals and Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2007; ISBN 978-7-04-022523-5. [Google Scholar]
- Griffo, A.; Wang, J.; Colombage, K.; Kamel, T. Real-Time Measurement of Temperature Sensitive Electrical Parameters in SiC Power MOSFETs. IEEE Trans. Ind. Electron. 2018, 65, 2663–2671. [Google Scholar] [CrossRef]
- Avenas, Y.; Dupont, L.; Khatir, Z. Temperature Measurement of Power Semiconductor Devices by Thermo-Sensitive Electrical Parameters—A Review. IEEE Trans. Power Electron. 2012, 27, 3081–3092. [Google Scholar] [CrossRef]
- Zeng, G.; Cao, H.; Chen, W.; Lutz, J. Difference in Device Temperature Determination Using P-n-Junction Forward Voltage and Gate Threshold Voltage. IEEE Trans. Power Electron. 2019, 34, 2781–2793. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Yu, H.; Chen, J.; Zeng, Z.; Yang, X.; Shen, Z.J. Online Junction Temperature Measurement for SiC MOSFET Based on Dynamic Threshold Voltage Extraction. IEEE Trans. Power Electron. 2021, 36, 3757–3768. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, P.; Guo, S.; Huang, A.Q. Comparative Study of Temperature Sensitive Electrical Parameters (TSEP) of Si, SiC and GaN Power Devices. In Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 7–9 November 2016; pp. 302–307. [Google Scholar]
GaN HEMT GS61008P | GaN HEMT IGT60R070D1 | SiC MOSFET CMF20120D | |
---|---|---|---|
Vds (mV) | 2.57 | 16.72 | 297 |
Vth (V) | 2.09 | 1.47 | 5.22 |
Vsd (mV) | 1.83 | 1.51 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Zhu, Y.; Zhao, H.; Zhao, R.; Zhu, B. Steady-State Temperature-Sensitive Electrical Parameters’ Characteristics of GaN HEMT Power Devices. Electronics 2024, 13, 363. https://doi.org/10.3390/electronics13020363
Wang K, Zhu Y, Zhao H, Zhao R, Zhu B. Steady-State Temperature-Sensitive Electrical Parameters’ Characteristics of GaN HEMT Power Devices. Electronics. 2024; 13(2):363. https://doi.org/10.3390/electronics13020363
Chicago/Turabian StyleWang, Kaihong, Yidi Zhu, Hao Zhao, Ruixue Zhao, and Binxin Zhu. 2024. "Steady-State Temperature-Sensitive Electrical Parameters’ Characteristics of GaN HEMT Power Devices" Electronics 13, no. 2: 363. https://doi.org/10.3390/electronics13020363
APA StyleWang, K., Zhu, Y., Zhao, H., Zhao, R., & Zhu, B. (2024). Steady-State Temperature-Sensitive Electrical Parameters’ Characteristics of GaN HEMT Power Devices. Electronics, 13(2), 363. https://doi.org/10.3390/electronics13020363