Adaptive Real-Time Tracking of Molten Metal Using Multi-Scale Features and Weighted Histograms
Abstract
:1. Introduction
2. Related Work
3. Problem Description
3.1. Limits of Visual Sensors in Complex High-Temperature Environments
3.2. Low Contrast between Target and Background
3.3. Intense Specular Reflections from Liquid Surfaces
4. Method
4.1. Feature Set Construction and Discriminability Evaluation for Tracking
4.2. Mean-Shift Target Tracking with Target-Weighted Histogram
4.3. Updating the Target Model
5. Experimental Results
Qualitative and Quantitative Comparisons
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1561–1575. [Google Scholar] [CrossRef] [PubMed]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2544–2550. [Google Scholar]
- Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 749–765. [Google Scholar]
- Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; Proceedings, Part II 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 850–865. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3645–3649. [Google Scholar]
- Comaniciu, D.; Ramesh, V.; Meer, P. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 564–577. [Google Scholar] [CrossRef]
- Collins, R.T.; Liu, Y.; Leordeanu, M. Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1631–1643. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yang, J. Robust object tracking via online dynamic spatial bias appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 2157–2169. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.Y.; Sun, S.F.; Ma, X.B.; Xu, Y.C.; Lei, B.J. Comparative study of color feature for particle filter based object tracking. In Proceedings of the 2012 International Conference on Machine Learning and Cybernetics, Xi’an, China, 15–17 July 2012; IEEE: Piscataway, NJ, USA, 2012; Volume 3, pp. 1104–1110. [Google Scholar]
- Liu, T.; Varior, R.R.; Wang, G. Visual tracking using learned color features. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1976–1980. [Google Scholar]
- Vacchetti, L.; Lepetit, V.; Fua, P. Combining edge and texture information for real-time accurate 3d camera tracking. In Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality, Arlington, VA, USA, 5 November 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 48–56. [Google Scholar]
- Dash, P.P.; Patra, D.; Mishra, S.K. Local binary pattern as a texture feature descriptor in object tracking algorithm. In Proceedings of the Intelligent Computing, Networking, and Informatics: Proceedings of the International Conference on Advanced Computing, Networking, and Informatics, Chhattisgarh, India, 12–14 June 2013; Springer: New Delhi, India, 2014; pp. 541–548. [Google Scholar]
- Dash, P.P.; Patra, D. Efficient object tracking algorithm using modified colour-texture descriptor. Int. J. Comput. Intell. Stud. 2015, 4, 102–112. [Google Scholar] [CrossRef]
- Yilmaz, A.; Li, X.; Shah, M. Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1531–1536. [Google Scholar] [CrossRef]
- Chiverton, J.; Xie, X.; Mirmehdi, M. Automatic bootstrapping and tracking of object contours. IEEE Trans. Image Process. 2011, 21, 1231–1245. [Google Scholar] [CrossRef]
- Choi, J.W.; Whangbo, T.K.; Kim, C.G. A contour tracking method of large motion object using optical flow and active contour model. Multimed. Tools Appl. 2015, 74, 199–210. [Google Scholar] [CrossRef]
- Xiao, C.; Cao, Q.; Zhong, Y.; Lan, L.; Zhang, X.; Cai, H.; Luo, Z.; Tao, D. MotionTrack: Learning Motion Predictor for Multiple Object Tracking. arXiv 2023, arXiv:2306.02585. [Google Scholar] [CrossRef]
- Huang, H.W.; Yang, C.Y.; Chai, W.; Jiang, Z.; Hwang, J.N. Exploring Learning-based Motion Models in Multi-Object Tracking. arXiv 2024, arXiv:2403.10826. [Google Scholar]
- Wang, J.; Chen, X.; Gao, W. Online selecting discriminative tracking features using particle filter. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 1037–1042. [Google Scholar]
- Wang, J.; Yagi, Y. Integrating color and shape-texture features for adaptive real-time object tracking. IEEE Trans. Image Process. 2008, 17, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, X. Adaptive contour feature and color feature fusion for monocular textureless 3D object tracking. IEEE Access 2018, 6, 30473–30482. [Google Scholar] [CrossRef]
- Ciaparrone, G.; Sánchez, F.L.; Tabik, S.; Troiano, L.; Tagliaferri, R.; Herrera, F. Deep learning in video multi-object tracking: A survey. Neurocomputing 2020, 381, 61–88. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Wang, J.; Yue, X.G. Visual object tracking based on residual network and cascaded correlation filters. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 8427–8440. [Google Scholar] [CrossRef]
- Li, P.; Chen, B.; Ouyang, W.; Wang, D.; Yang, X.; Lu, H. GradNet: Gradient-guided network for visual object tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Koreea, 27 October–2 November 2019; pp. 6162–6171. [Google Scholar]
- Bhat, G.; Danelljan, M.; Van Gool, L.; Timofte, R. Know your surroundings: Exploiting scene information for object tracking. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXIII 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 205–221. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 886–893. [Google Scholar]
- Tan, K.; Lee, W.S.; Gan, H.; Wang, S. Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes. Biosyst. Eng. 2018, 176, 59–72. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Bhattacharyya, A.; Banerjee, P.; Roy, P.P.; Murala, S. A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern. Pattern Anal. Appl. 2020, 23, 703–723. [Google Scholar] [CrossRef]
- Kalake, L.; Dong, Y.; Wan, W.; Hou, L. Enhancing detection quality rate with a combined hog and cnn for real-time multiple object tracking across non-overlapping multiple cameras. Sensors 2022, 22, 2123. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, J. A fast HOG descriptor using lookup table and integral image. arXiv 2017, arXiv:1703.06256. [Google Scholar]
- Liang, D.; Huang, Q.; Gao, W.; Yao, H. Online selection of discriminative features using Bayes error rate for visual tracking. In Proceedings of the Advances in Multimedia Information Processing-PCM 2006: 7th Pacific Rim Conference on Multimedia, Hangzhou, China, 2–4 November 2006; Proceedings 7. Springer: Berlin/Heidelberg, Germany, 2006; pp. 547–555. [Google Scholar]
- Han, Z.; Ye, Q.; Jiao, J. Combined feature evaluation for adaptive visual object tracking. Comput. Vis. Image Underst. 2011, 115, 69–80. [Google Scholar] [CrossRef]
- Chen, L.; Ai, H.; Zhuang, Z.; Shang, C. Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Ning, J.; Zhang, L.; Zhang, D.; Wu, C. Robust mean-shift tracking with corrected background-weighted histogram. IET Comput. Vis. 2012, 6, 62–69. [Google Scholar] [CrossRef]
- Wang, L.; Yan, H.; Wu, H.Y.; Pan, C. Forward–backward mean-shift for visual tracking with local-background-weighted histogram. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1480–1489. [Google Scholar] [CrossRef]
- Chu, H.; Song, Q.; Yuan, H.; Xie, Z.; Zhang, R.; Jiang, W. Research of Mean Shift target tracking with Spatiogram Corrected Background-Weighted Histogram. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1942–1946. [Google Scholar]
- Dai, K.; Zhang, Y.; Wang, D.; Li, J.; Lu, H.; Yang, X. High-performance long-term tracking with meta-updater. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6298–6307. [Google Scholar]
- Liu, S.; Liu, D.; Muhammad, K.; Ding, W. Effective template update mechanism in visual tracking with background clutter. Neurocomputing 2021, 458, 615–625. [Google Scholar] [CrossRef]
- Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.M.; Hicks, S.L.; Torr, P.H. Struck: Structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2096–2109. [Google Scholar] [CrossRef]
- Bhat, G.; Danelljan, M.; Gool, L.V.; Timofte, R. Learning discriminative model prediction for tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6182–6191. [Google Scholar]
- Mayer, C.; Danelljan, M.; Bhat, G.; Paul, M.; Paudel, D.P.; Yu, F.; Van Gool, L. Transforming model prediction for tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8731–8740. [Google Scholar]
DiMP | KYS | ToMP | Ours | |
---|---|---|---|---|
95.1 | 93.6 | 86.2 | 97.8 | |
66.9 | 68.7 | 71.9 | 86.3 | |
73.2 | 74.6 | 71.6 | 87.7 | |
95.4 | 93.5 | 89.9 | 96.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Xu, D. Adaptive Real-Time Tracking of Molten Metal Using Multi-Scale Features and Weighted Histograms. Electronics 2024, 13, 2905. https://doi.org/10.3390/electronics13152905
Lei Y, Xu D. Adaptive Real-Time Tracking of Molten Metal Using Multi-Scale Features and Weighted Histograms. Electronics. 2024; 13(15):2905. https://doi.org/10.3390/electronics13152905
Chicago/Turabian StyleLei, Yifan, and Degang Xu. 2024. "Adaptive Real-Time Tracking of Molten Metal Using Multi-Scale Features and Weighted Histograms" Electronics 13, no. 15: 2905. https://doi.org/10.3390/electronics13152905
APA StyleLei, Y., & Xu, D. (2024). Adaptive Real-Time Tracking of Molten Metal Using Multi-Scale Features and Weighted Histograms. Electronics, 13(15), 2905. https://doi.org/10.3390/electronics13152905