Optimal Process Design for Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Capacitors: Toward Low-Power Devices with Enhanced Ferroelectric Performance
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Tao, L.; Guzman, R.; Luo, Q.; Zhou, W.; Yang, Y.; Wei, Y.; Liu, Y.; Jiang, P.; Chen, Y.; et al. A stable rhombohedral phase in ferroelectric Hf(Zr)1+xO2 capacitor with ultralow coercive field. Science 2023, 381, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.K.; Huang, Y.K.; Chou, C.P.; Wu, Y. Recognizing Spatiotemporal Features by a Neuromorphic Network with Highly Reliable Ferroelectric Capacitors on Epitaxial GeSn Film. ACS Appl. Mater. Interfaces 2021, 13, 26630–26638. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, T.; Li, Z.; Yu, J.; Meng, J.; Xu, K.; Liu, P.; Zhu, H.; Sun, Q.; Zhang, D.W.; et al. Enhanced Ferroelectricity in Hf-Based Ferroelectric Device with ZrO2 Regulating Layer. Adv. Electron. Mater. 2023, 9, 2300208. [Google Scholar] [CrossRef]
- Kim, J.H.; Onaya, T.; Park, H.R.; Jung, Y.C.; Le, D.N.; Lee, M.; Hernandez-Arriaga, H.; Zhang, Y.; Tsai, E.H.R.; Nam, C.Y.; et al. Toward Low-Thermal-Budget Hafnia-Based Ferroelectrics via Atomic Layer Deposition. ACS Appl. Electron. Mater. 2023, 5, 4726–4745. [Google Scholar] [CrossRef]
- Kim, G.; Ko, D.H.; Kim, T.; Lee, S.; Jung, M.; Lee, Y.K.; Lim, S.; Jo, M.; Eom, T.; Shin, H.; et al. Power-Delay Area-Efficient Processing-In-Memory Based on Nanocrystalline Hafnia Ferroelectric Field-Effect Transistors. ACS Appl. Mater. Interfaces 2023, 15, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Wang, X.; Li, Y.; Wu, M.; Wu, Y.; Liu, J.; Li, X.; Ren, P.; Ye, S.; Ji, Z.; et al. Back-End-of-Line Compatible HfO2/ZrO2 Superlattice Ferroelectric Capacitor with High Endurance and Remnant Polarization. IEEE Electron Device Lett. 2023, 44, 1011–1014. [Google Scholar] [CrossRef]
- Yan, F.; Wu, Y.; Liu, Y.; Ai, P.; Liu, S.; Deng, S.; Xue, K.-H.; Fu, Q.; Dong, W. Recent progress on defect-engineering in ferroelectric HfO2: The next step forward via multiscale structural optimization. Mater. Horiz. 2023, 11, 626–645. [Google Scholar] [CrossRef]
- Lo, C.; Chang, S.C.; Lin, K.T.; Chen, C.K.; Chang, C.F.; Zhang, F.S.; Lu, Z.H.; Chao, T.S. Fabrication of Bilayer Stacked Antiferroelectric/ Ferroelectric HfxZr1-xO2 FeRAM and FeFET with Improved Leakage Current and Robust Reliability by Modifying Atomic Layer Deposition Temperatures. IEEE Electron Device Lett. 2023, 44, 883–886. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, C.; Lin, B.; Yang, Z.; Chen, S.; Zhang, K.H.L.; Chen, Z. Leakage mechanism in ferroelectric Hf0.5Zr0.5O2 epitaxial thin films. Appl. Mater. Today 2023, 32, 101804. [Google Scholar] [CrossRef]
- Saini, B.; Huang, F.; Choi, Y.Y.; Yu, Z.; Baniecki, J.D.; Thampy, V.; Tsai, W.; McIntyre, P.C. Mechanism of polarization “Wake-Up” in ferroelectric Hafnia-Zirconia thin films. Solid-State Electron. 2023, 208, 108714. [Google Scholar] [CrossRef]
- Saini, B.; Huang, F.; Choi, Y.Y.; Yu, Z.; Thampy, V.; Baniecki, J.D.; Tsai, W.; McIntyre, P.C. Field-Induced Ferroelectric Phase Evolution During Polarization “Wake-Up” in Hf0.5Zr0.5O2 Thin Film Capacitors. Adv. Electron. Mater. 2023, 9, 2300016. [Google Scholar] [CrossRef]
- Pešić, M.; Fengler, F.P.G.; Larcher, L.; Padovani, A.; Schenk, T.; Grimley, E.D.; Sang, X.; LeBeau, J.M.; Slesazeck, S.; Schroeder, U.; et al. Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors. Adv. Funct. Mater. 2016, 26, 4601–4612. [Google Scholar] [CrossRef]
- Kashir, A.; Oh, S.; Hwang, H. Defect Engineering to Achieve Wake-up Free HfO2-Based Ferroelectrics. Adv. Eng. Mater. 2021, 23, 2000791. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Zhao, S.; Gong, T.; Jiang, P.; Lv, S.; Yu, H.; Yuan, P.; Dang, Z.; Ding, Y.; et al. Robust Breakdown Reliability and Improved Endurance in Hf0.5Zr0.5O2 Ferroelectric Using Grain Boundary Interruption. IEEE Trans. Electron Devices 2022, 69, 430–433. [Google Scholar] [CrossRef]
- Shin, J.; Tanuma, M.; Ohmi, S. Effects of sputtering power on the formation of 5 nm thick ferroelectric nondoped HfO2 gate insulator for MFSFET application. Jpn. J. Appl. Phys. 2022, 61, SH1010. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, W.; Li, Y. Hafnium-doped zirconia ferroelectric thin films with excellent endurance at high polarization. Nanoscale 2023, 15, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, M.; Zeng, M.; Gao, X.; Zhou, G.; Lu, X.; Liu, J.M.; Wang, D.; Li, Q.; Zhang, A.; et al. Excellent Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films Induced by Al2O3 Dielectric Layer. IEEE Electron Device Lett. 2019, 40, 1937–1940. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, B.; Yang, Y.; Lv, S.; Wang, Y.; Xu, Y.; Jiang, P.; Chen, Y.; Dang, Z.; Ding, Y.; et al. Enhanced Remnant Polarization (30 μC/cm2) and Retention of Ferroelectric Hf0.5Zr0.5O2 by NH3 Plasma Treatment. IEEE Electron Device Lett. 2022, 43, 1045–1048. [Google Scholar] [CrossRef]
- Yang, K.; Kim, G.Y.; Ryu, J.J.; Lee, D.H.; Park, J.Y.; Kim, S.H.; Park, G.H.; Yu, G.T.; Kim, G.H.; Choi, S.Y.; et al. Wake-up-mitigated giant ferroelectricity in Hf0.5Zr0.5O2 thin films through oxygen-providing, surface-oxidized W electrode. Mater. Sci. Semicond. Process. 2023, 164, 107565. [Google Scholar] [CrossRef]
- Xu, P.; Yan, S.; Zhu, Y.; Zang, J.; Luo, P.; Li, G.; Yang, Q.; Chen, Z.; Zhang, W.; Zheng, X.; et al. Effects of different metal electrodes on the ferroelectric properties of HZO thin films. J. Mater. Sci. Mater. Electron. 2023, 34, 1915. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, I.J.; Lee, J.S. Defect Engineering of Hafnia-Based Ferroelectric Materials for High-Endurance Memory Applications. ACS Omega 2023, 8, 18180–18185. [Google Scholar] [CrossRef]
- Hsain, H.A.; Lee, Y.; Lancaster, S.; Materano, M.; Alcala, R.; Xu, B.; Mikolajick, T.; Schroeder, U.; Parsons, G.N.; Jones, J.L. Role of Oxygen Source on Buried Interfaces in Atomic-Layer-Deposited Ferroelectric Hafnia–Zirconia Thin Films. ACS Appl. Mater. Interfaces 2022, 14, 42232–42244. [Google Scholar] [CrossRef] [PubMed]
- Shvilberg, L.; Zhou, C.; Lenox, M.K.; Aronson, B.L.; Lam, N.K.; Jaszewski, S.T.; Opila, E.J.; Ihlefeld, J.F. Oxygen diffusion coefficients in ferroelectric hafnium zirconium oxide thin films. Appl. Phys. Lett. 2024, 124, 252905. [Google Scholar] [CrossRef]
- Park, M.H.; Chung, C.-C.; Schenk, T.; Richter, C.; Opsomer, K.; Detavernier, C.; Adelmann, C.; Jones, J.L.; Mikolajick, T.; Schroeder, U. Effect of Annealing Ferroelectric HfO2 Thin Films: In Situ, High Temperature X-Ray Diffraction. Adv. Electron. Mater. 2018, 4, 1800091. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Jiang, Y.-S.; Chuang, C.-H.; Mo, C.-L.; Wang, T.-Y.; Lin, H.-C.; Chen, M.-J. Impact of asymmetric electrodes on ferroelectricity of sub-10 nm HZO thin films. Nanotechnology 2023, 35, 105201. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.; Zeng, B.; Luo, Z.; Yang, Z.; Hao, P.; Liao, L.; Yang, Q.; Peng, Q.; Zheng, S.; Zhou, Y.; et al. Improved ferroelectric properties of CMOS back-end-of-line compatible Hf0.5Zr0.5O2 thin films by introducing dielectric layers. J. Mater. 2023, 24, 05013. [Google Scholar] [CrossRef]
- Luo, J.-D.; Lai, Y.-Y.; Hsiang, K.-Y.; Wu, C.-F.; Chung, H.-T.; Li, W.-S.; Liao, C.-Y.; Chen, P.-G.; Chen, K.-N.; Lee, M.-H.; et al. Atomic Layer Deposition Plasma-Based Undoped-HfO2 Ferroelectric FETs for Non-Volatile Memory. IEEE Electron Device Lett. 2021, 42, 1152–1155. [Google Scholar] [CrossRef]
- Fields, S.S.; Cai, T.; Jaszewski, S.T.; Salanova, A.; Mimura, T.; Heinrich, H.H.; Henry, M.D.; Kelley, K.P.; Sheldon, B.W.; Ihlefeld, J.F. Origin of Ferroelectric Phase Stabilization via the Clamping Effect in Ferroelectric Hafnium Zirconium Oxide Thin Films. Adv. Electron. Mater. 2022, 8, 2200601. [Google Scholar] [CrossRef]
- Materano, M.; Mittmann, T.; Lomenzo, P.D.; Zhou, C.; Jones, J.L.; Falkowski, M.; Kersch, A.; Mikolajick, T.; Schroeder, U. Influence of Oxygen Content on the Structure and Reliability of Ferroelectric HfxZr1–xO2 Layers. ACS Appl. Electron. Mater. 2020, 2, 3618–3626. [Google Scholar] [CrossRef]
- Lee, J.; Yang, K.; Kwon, J.Y.; Kim, J.E.; Han, D.I.; Lee, D.H.; Yoon, J.H.; Park, M.H. Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide. Nano Converg. 2023, 10, 55. [Google Scholar] [CrossRef]
- Liao, J.; Zeng, B.; Sun, Q.; Chen, Q.; Liao, M.; Qiu, C.; Zhang, Z.; Zhou, Y. Grain Size Engineering of Ferroelectric Zr-doped HfO2 for the Highly Scaled Devices Applications. IEEE Electron Device Lett. 2019, 40, 1868–1871. [Google Scholar] [CrossRef]
- Hiranaga, Y.; Noguchi, Y.; Mimura, T.; Shimizu, T.; Funakubo, H.; Cho, Y. Data-Driven Analysis of High-Resolution Hyperspectral Image Data Sets through Nanoscale Capacitance–Voltage Measurements to Visualize Ferroelectric Domain Dynamics. ACS Appl. Nano Mater. 2024, 7, 8525–8536. [Google Scholar] [CrossRef]
- Lederer, M.; Olivo, R.; Lehninger, D.; Abdulazhanov, S.; Kämpfe, T.; Kirbach, S.; Mart, C.; Seidel, K.; Eng, L.M. On the Origin of Wake-Up and Antiferroelectric-Like Behavior in Ferroelectric Hafnium Oxide. Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2100086. [Google Scholar] [CrossRef]
- Su, M.; Gao, S.; Weng, Z.; Zhao, L.; Lee, C.; Zhao, Y. Improvement of Ferroelectricity and Reliability in Hf0.5Zr0.5O2 Thin Films with Two-Step Oxygen Vacancy Engineering. IEEE Electron Device Lett. 2022, 43, 1057–1060. [Google Scholar] [CrossRef]
- Baumgarten, L.; Szyjka, T.; Mittmann, T.; Gloskovskii, A.; Schlueter, C.; Mikolajick, T.; Schroeder, U.; Müller, M. Smart Design of Fermi Level Pinning in HfO2-Based Ferroelectric Memories. Adv. Funct. Mater. 2023, 36, 2307120. [Google Scholar] [CrossRef]
- Kim, H.B.; Dae, K.S.; Oh, Y.; Lee, S.W.; Lee, Y.; Ahn, S.E.; Jang, J.H.; Ahn, J.H. A Simple Strategy to Realize Super Stable Ferroelectric Capacitor via Interface Engineering. Adv. Mater. Interfaces 2022, 9, 2102528. [Google Scholar] [CrossRef]
- Toprasertpong, K.; Takenaka, M.; Takagi, S. Breakdown-limited endurance in HZO FeFETs: Mechanism and improvement under bipolar stress. Front. Electron. 2022, 3, 1091343. [Google Scholar] [CrossRef]
- Onaya, T.; Nabatame, T.; Sawamoto, N.; Ohi, A.; Ikeda, N.; Nagata, T.; Ogura, A. Improvement in ferroelectricity of HfxZr1−xO2 thin films using top- and bottom-ZrO2 nucleation layers. APL Mater. 2019, 7, 061107. [Google Scholar] [CrossRef]
- Onaya, T.; Nabatame, T.; Inoue, M.; Jung, Y.C.; Hernandez Arriaga, H.; Mohan, J.; Kim, H.S.; Sawamoto, N.; Nagata, T.; Kim, J.; et al. Improvement in ferroelectricity and breakdown voltage of over 20-nm-thick HfxZr1−xO2/ZrO2 bilayer by atomic layer deposition. Appl. Phys. Lett. 2020, 117, 232902. [Google Scholar] [CrossRef]
- Kim, B.Y.; Park, H.W.; Hyun, S.D.; Lee, Y.B.; Lee, S.H.; Oh, M.; Ryoo, S.K.; Lee, I.S.; Byun, S.; Shim, D.; et al. Enhanced Ferroelectric Properties in Hf0.5Zr0.5O2 Films Using a HfO0.61N0.72 Interfacial Layer. Adv. Electron. Mater. 2021, 8, 2100042. [Google Scholar] [CrossRef]
- Lehninger, D.; Olivo, R.; Ali, T.; Lederer, M.; Kämpfe, T.; Mart, C.; Biedermann, K.; Kühnel, K.; Roy, L.; Kalkani, M.; et al. Back-End-of-Line Compatible Low-Temperature Furnace Anneal for Ferroelectric Hafnium Zirconium Oxide Formation. Phys. Status Solidi (A) 2020, 217, 1900840. [Google Scholar] [CrossRef]
- Liu, W.Y.; Liao, J.J.; Jiang, J.; Zhou, Y.C.; Chen, Q.; Mo, S.T.; Yang, Q.; Peng, Q.X.; Jiang, L.M. Highly stable performance of flexible Hf0.6Zr0.4O2 ferroelectric thin films under multi-service conditions. J. Mater. Chem. C 2020, 8, 3878–3886. [Google Scholar] [CrossRef]
- Si, M.; Lyu, X.; Shrestha, P.R.; Sun, X.; Wang, H.; Cheung, K.P.; Ye, P.D. Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide. Appl. Phys. Lett. 2019, 115, 072107. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, J.; Gong, Z.; Gu, J.; Yu, X.; Jin, C.; Peng, Y.; Liu, Y.; Chen, B.; Cheng, R.; et al. Controlling the Ferroelectricity of Doped-HfO2 via Reversible Migration of Oxygen Vacancy. IEEE Trans. Electron Devices 2023, 70, 1789–1794. [Google Scholar] [CrossRef]
- Islamov, D.R.; Perevalov, T.V. Effect of oxygen vacancies on the ferroelectric Hf0.5Zr0.5O2 stabilization: DFT simulation. Microelectron. Eng. 2019, 216, 111041. [Google Scholar] [CrossRef]
- Miwa, S.; Kusanagi, S.; Kobayashi, H. SIMS analysis of HfSiO(N) thin films. Appl. Surf. Sci. 2006, 252, 7176–7178. [Google Scholar] [CrossRef]
- Priebe, A.; Xie, T.; Bürki, G.; Pethö, L.; Michler, J. The matrix effect in TOF-SIMS analysis of two-element inorganic thin films. J. Anal. At. Spectrom. 2020, 35, 1156–1166. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, Y.; Meng, M.; Hong, P.; Ning, S.; Luo, F. Improving the endurance for ferroelectric Hf0.5Zr0.5O2 thin films by interface and defect engineering. Appl. Phys. Lett. 2024, 124, 092904. [Google Scholar] [CrossRef]
- Zeng, B.; Xie, S.; Zhang, S.; Huang, H.; Ju, C.; Zheng, S.; Peng, Q.; Yang, Q.; Zhou, Y.; Liao, M. Polarization fatigue mechanism of laminated hafnium zirconium oxide ferroelectric thin films. Acta Mater. 2024, 272, 119920. [Google Scholar] [CrossRef]
- Kim, M.; Goh, Y.; Hwang, J.; Jeon, S. Enabling large ferroelectricity and excellent reliability for ultra-thin hafnia-based ferroelectrics with a W bottom electrode by inserting a metal-nitride diffusion barrier. Appl. Phys. Lett. 2021, 119, 262905. [Google Scholar] [CrossRef]
- Moltved, K.A.; Kepp, K.P. The Chemical Bond between Transition Metals and Oxygen: Electronegativity, d-Orbital Effects, and Oxophilicity as Descriptors of Metal–Oxygen Interactions. J. Phys. Chem. C 2019, 123, 18432–18444. [Google Scholar] [CrossRef]
- Mews, M.; Korte, L.; Rech, B. Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2016, 158, 77–83. [Google Scholar] [CrossRef]
- Lyu, X.; Si, M.; Sun, X.; Capano, M.A.; Wang, H.; Ye, P.D. Ferroelectric and Anti-Ferroelectric Hafnium Zirconium Oxide: Scaling Limit, Switching Speed and Record High Polarization Density. In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T44–T45. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Qi, J.; Xie, X.; Liu, Z.; Wu, W.; Lee, C. Optimal Process Design for Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Capacitors: Toward Low-Power Devices with Enhanced Ferroelectric Performance. Electronics 2024, 13, 2895. https://doi.org/10.3390/electronics13152895
Wang H, Qi J, Xie X, Liu Z, Wu W, Lee C. Optimal Process Design for Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Capacitors: Toward Low-Power Devices with Enhanced Ferroelectric Performance. Electronics. 2024; 13(15):2895. https://doi.org/10.3390/electronics13152895
Chicago/Turabian StyleWang, Hui, Jiabin Qi, Xinyu Xie, Zongfang Liu, Wenhao Wu, and Choonghyun Lee. 2024. "Optimal Process Design for Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Capacitors: Toward Low-Power Devices with Enhanced Ferroelectric Performance" Electronics 13, no. 15: 2895. https://doi.org/10.3390/electronics13152895
APA StyleWang, H., Qi, J., Xie, X., Liu, Z., Wu, W., & Lee, C. (2024). Optimal Process Design for Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Capacitors: Toward Low-Power Devices with Enhanced Ferroelectric Performance. Electronics, 13(15), 2895. https://doi.org/10.3390/electronics13152895