5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite
Abstract
1. Introduction
2. The Signal Model and Principle of the Proposed Method
2.1. The Signal Model
- denote the slot, OFDM symbol and subcarrier number, respectively;
- denote the number of OFDM symbols per slot and the number of subcarriers;
- denotes the modulation symbols of subcarriers;
- denotes the subcarrier frequency;
- denotes the duration of an OFDM symbol;
- denotes a rectangular function representing the duration of a symbol.
2.2. Doppler Estimation Based on Improved GSS-FRFT
2.3. Effective Velocity and Location Estimation Method
| Algorithm 1: Principle of effective velocity estimation method. |
| Initialize: , Set the filters: Filter the processed signal and find the peak: if break else , end if return |
3. Analysis of the Method Performance
3.1. Analysis of Resolutions
3.2. Analysis of Computation Complexity
4. Simulation and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| 5G | 5th-Generation Mobile Communication Technology |
| OFDM | Orthogonal Frequency Division Multiplexing |
| GSS-FRFT | Golden Section search-fractional Fourier transform |
| 6G | 6th-Generation Mobile Communication Technology |
| DOA | Direction of arrival |
| TDOA | Time difference of arrival |
| FDOA | Frequency difference of arrival |
| CBF | Conventional beamformer |
| MUSIC | Multiple signal classification |
| MLE | Maximum likelihood estimator |
| EMVS | Electromagnetic vector sensor |
| DDR | Differential Doppler rate |
| LSE | Least squares estimator |
References
- Soldo, Y.; Le Vine, D.M.; Bringer, A.; de Matthaeis, P.; Oliva, R.; Johnson, J.T.; Piepmeier, J.R. Location of radio-frequency interference sources using the SMAP L-band radiometer. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6854–6866. [Google Scholar] [CrossRef]
- Huang, J.H.; Barr, M.N.; Garry, J.L.; Smith, G.E. Subarray Processing for Passive Radar Localization. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 248–252. [Google Scholar]
- Wu, G.; Guo, F.; Zhang, M. Direct position determination: An overview. J. Radars 2020, 9, 998–1013. [Google Scholar]
- Maghraby, A.K.S.E.; Park, H.; Camps, A.; Grubišić, A.; Colombo, C.; Tatnall, A. Phase and Baseline Calibration for Microwave Interferometric Radiometers Using Beacons. IEEE Trans. Geosci. Remote Sens. 2019, 58, 5242–5253. [Google Scholar] [CrossRef]
- Dempster, A.G.; Cetin, E. Interference localization for satellite navigation systems. Proc. IEEE 2016, 104, 1318–1326. [Google Scholar] [CrossRef]
- Eranti, P.K.; Barkana, B.D. An Overview of Direction-of-Arrival Estimation Methods Using Adaptive Directional Time-Frequency Distributions. Electronics 2022, 11, 1321. [Google Scholar] [CrossRef]
- Chen, T.; Shen, M.Y.; Guo, L.M.; Hu, X.J. A gridless DOA estimation algorithm based on unsupervised deep learning. Digit. Signal Process. 2023, 133, 103823. [Google Scholar] [CrossRef]
- Cai, C.X.; Huang, G.J.; Wen, F.Q.; Wang, X.H.; Wang, L. 2D-DOA Estimation for EMVS Array with Nonuniform Noise. Int. J. Antennas Propag. 2021, 2021, 9053864. [Google Scholar] [CrossRef]
- Wen, F.Q.; Shi, J.P.; Gui, G.; Gacanin, H.; Dobre, O.A. 3-D Positioning Method for Anonymous UAV Based on Bistatic Polarized MIMO Radar. IEEE Internet Things J. 2023, 10, 815–827. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Zhang, S.S. Passive Location Based on an Accurate Doppler Measurement by Single Satellite. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 1424–1427. [Google Scholar]
- Lopez, R.; Malarde, J.P.; Royer, F.; Gaspar, P. Improving argos Doppler location using multiple-model Kalman filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4744–4755. [Google Scholar] [CrossRef]
- Liu, Z.X.; Wang, R.; Zhao, J. Computationally efficient TDOA and FDOA estimation algorithm in passive emitter localisation. IET Radar Sonar Navig. 2019, 13, 1731–1740. [Google Scholar] [CrossRef]
- Liu, C.; Yun, J.; Su, J. Direct solution for fixed source location using well-posed TDOA and FDOA measurements. J. Syst. Eng. Electron. 2020, 31, 666–673. [Google Scholar]
- Wang, H.; Li, L.P. An effective localization algorithm for moving sources. EURASIP J. Adv. Signal Process. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Ma, G.N.; Huang, Z.J.; Wang, M.; Ji, Z.Y.; Li, X.L.; Shen, B.; Tian, J. Performance Analysis and Sensor-Target Geometry Optimization for TOA and TDOA-Based Hybrid Source Localization Method. Appl. Sci. 2022, 12, 12977. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Wang, J.H.; Ba, B.; Wang, D.M. A Novel Direct Position Determination Algorithm for Orthogonal Frequency Division Multiplexing Signals Based on the Time and Angle of Arrival. IEEE Access 2017, 5, 25312–25321. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Li, J.Q.; Chen, S.J. 5G NR Positioning Technology and Its Deployment Scheme. ZTE Technol. J. 2021, 27, 49–53. [Google Scholar]
- Wang, Y.; Sun, G.; Wang, Y.; Zhang, Z.; Xing, M.; Yang, X. A high-resolution and high-precision passive positioning system based on synthetic aperture technique. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5230613. [Google Scholar] [CrossRef]
- Zhang, L.; Huan, H.; Tao, R.; Wang, Y. Emitter Localization Algorithm Based on Passive Synthetic Aperture. IEEE Trans. Aerosp. Electron. Syst. 2020, 58, 998–1013. [Google Scholar] [CrossRef]
- Li, A.; Huan, H.; Tao, R.; Zhang, L. Passive synthetic aperture high-precision radiation source location by single satellite. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4010105. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Yang, Q. Passive Location for 5G OFDM Radiation Sources Based on Virtual Synthetic Aperture. Remote Sens. 2023, 15, 1695. [Google Scholar] [CrossRef]
- Aldimashki, O.; Serbes, A. Performance of Chirp Parameter Estimation in the Fractional Fourier Domains and an Algorithm for Fast Chirp-Rate Estimation. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3685–3700. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, L.D. LFM signal optimization time-fractional frequency analysis: Principles, method and application. Digit. Signal Process. 2022, 126, 103505. [Google Scholar] [CrossRef]
- Zhang, N.; Tao, R.; Shan, T.; Wang, Y. Analysis of the Resolution of the Linear Frequency Modulated Signal Based on the Fractional Fourier Transform. Acta Electron. Sin. 2007, 35, 8–11. [Google Scholar]







| Parameters | Values |
|---|---|
| Center frequency | 29 GHz |
| Subcarrier interval | 30 kHz |
| Bandwidth | 50 MHz |
| Sampling frequency | 122.88 MHz |
| Modulation | 16QAM |
| Antenna aperture | 5 m |
| SNR | 5 dB |
| Inclination | 49 deg |
| Semimajor | 6876 km |
| Eccentricity | 0 |
| Source location | (−1821.6, 3766.26, 4799.15) km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Zhang, X.; Wang, X.; Yang, Q. 5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite. Electronics 2024, 13, 2874. https://doi.org/10.3390/electronics13142874
Zhang T, Zhang X, Wang X, Yang Q. 5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite. Electronics. 2024; 13(14):2874. https://doi.org/10.3390/electronics13142874
Chicago/Turabian StyleZhang, Tong, Xin Zhang, Xiangyuan Wang, and Qiang Yang. 2024. "5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite" Electronics 13, no. 14: 2874. https://doi.org/10.3390/electronics13142874
APA StyleZhang, T., Zhang, X., Wang, X., & Yang, Q. (2024). 5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite. Electronics, 13(14), 2874. https://doi.org/10.3390/electronics13142874

