Design of a Tunnel Anchor Monitoring System Based on Long Short-Term Memory–Autoregressive Integrated Moving Average Prediction
Abstract
:1. Introduction
2. System Design
2.1. System Function Design
2.2. System Architecture Design
3. Data Collection and Transmission
3.1. Concentrator Design
3.2. Sensor Installation and Collection
3.3. Data Transmission
4. Prediction Model
4.1. Long Short-Term Memory Network (LSTM)
4.2. Autoregressive Moving Average (ARIMA)
4.3. LSTM–ARIMA Combined Forecasting Model
5. System Function Verification
5.1. Real-Time Analysis
5.2. Reliability Analysis
5.3. Prediction Model Validation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, C.; Gao, D.; Zhang, H.; Xu, Z.; Huang, J. Superstructure optimization models for regional coal industry development considering water resources constraints—A case study of Ordos, China. Comput. Chem. Eng. 2023, 178, 108384. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, B.; Chen, S.; Ren, M. Surface collapse control under thick unconsolidated layers by backfilling strip mining in coal mines. Int. J. Rock Mech. Min. Sci. 2019, 113, 268–277. [Google Scholar] [CrossRef]
- Yao, J.; Han, K.; Zhu, W.; Cao, Y. Research on Collapse Detection in Old Coal Mine Goafs Based on Space–Sky–Earth Remote Sensing Survey. Remote Sens. 2024, 16, 1164. [Google Scholar] [CrossRef]
- Liu, T.; Xu, D.; Shi, L.; Qu, L.; Ji, K. Trapezoidal collapse model to calculate the height of the overburden collapse zone in coal seam mining: An example from Guo’Jiahe Coal Mine, Western China. Energy 2022, 256, 124609. [Google Scholar] [CrossRef]
- Wang, L.; Sun, K.; Qi, J.; Yuan, R. Distributed High-Density Anchor (Cable) Support Force Monitoring System Research. Electronics 2024, 13, 2221. [Google Scholar] [CrossRef]
- Liu, S.; He, D.; Fu, M. Experimental investigation of surrounding-rock anchoring synergistic component for bolt support in tunnels. Tunn. Undergr. Space Technol. 2020, 104, 103531. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.; Xiao, Y. Synergistic resin anchoring technology of rebar bolts in coal mine roadways. Int. J. Rock Mech. Min. Sci. 2022, 151, 105034. [Google Scholar] [CrossRef]
- Yuan, H.; Li, Y.; Zhou, B.; He, S.; Wang, P. Friction Characteristics of Post-Tensioned Tendons of Full-Scale Structures Based on Site Tests. Adv. Civ. Eng. 2020, 2020, 5916738. [Google Scholar] [CrossRef]
- Fu, J.; Guo, Y.; Li, P. A Fiber Bragg Grating Anchor Rod Force Sensor for Accurate Anchoring Force Measuring. IEEE Access 2020, 8, 12796–12801. [Google Scholar] [CrossRef]
- Kou, H.-L.; Li, W.; Zhang, W.-C.; Zhou, Y.; Zhou, X.-L. Stress Monitoring on GFRP Anchors Based on Fiber Bragg Grating Sensors. Sensors 2019, 19, 1507. [Google Scholar] [CrossRef]
- Miao, Q.; Huang, B. On the optimal anchor placement in single-hop sensor localization. Wirel. Netw. 2018, 24, 1609–1620. [Google Scholar] [CrossRef]
- Kou, H.; Guo, W.; Zhang, M. Pullout performance of GFRP anti-floating anchor in weathered soil. Tunn. Undergr. Space Technol. 2015, 49, 408–416. [Google Scholar] [CrossRef]
- Liu, J. Enhanced prediction of bolt support drilling pressure using optimized Gaussian process regression. Sci. Rep. 2024, 14, 2247. [Google Scholar] [CrossRef]
- Gao, X.; Tian, W.; Li, J.; Qi, H.; Zhang, Z. Research on Prediction Model of Prestress Loss of Anchor Cable in Soil-Rock Dual-Structure Slope. Adv. Mater. Sci. Eng. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Ostmeyer, J.; Cowell, L. Machine learning on sequential data using a recurrent weighted average. Neurocomputing 2019, 331, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.; Castillo, O.; Melin, P.; Pedrycz, W. A New Approach to Multiple Time Series Prediction Using MIMO Fuzzy Aggregation Models with Modular Neural Networks. Int. J. Fuzzy Syst. 2019, 21, 1629–1648. [Google Scholar] [CrossRef]
- Eskandari, H.; Imani, M.; Moghaddam, M.P. Convolutional and recurrent neural network based model for short-term load forecasting. Electr. Power Syst. Res. 2021, 195, 107173. [Google Scholar] [CrossRef]
- Li, Y.; Wu, K.; Liu, J. Self-paced ARIMA for robust time series prediction. Knowl.-Based Syst. 2023, 269, 110489. [Google Scholar] [CrossRef]
- Diaz, J.; Agioutantis, Z.; Hristopulos, D.T.; Luxbacher, K.; Schafrik, S. Forecasting of methane gas in underground coal mines: Univariate versus multivariate time series modeling. Stoch. Environ. Res. Risk Assess. 2023, 37, 2099–2115. [Google Scholar] [CrossRef]
- Odaki, M. On the invertibility of fractionally differenced ARIMA processes. Biometrika 1993, 80, 703–709. [Google Scholar] [CrossRef]
- Solo, V. The Order of Differencing in ARIMA Models. J. Am. Stat. Assoc. 1984, 79, 916–921. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Mahalder, B.; Haque, M.M.; Shohan, M.H.; Biswas, J.C.; Akhtar, S.; Ahammad, A.K.S. Forecasting of tilapia (Oreochromis niloticus) production in Bangladesh using ARIMA model. Heliyon 2024, 10, e27111. [Google Scholar] [CrossRef]
Testing Frequency | Transmission Distance (m) | Sending Timestamp | Receive Timestamp | Delay (s) | Theoretical Delay (s) |
---|---|---|---|---|---|
1 | 1000 | 18:23:36:346 | 18:23:36:867 | 0.521 | 0.428 |
2 | 1000 | 18:23:46:353 | 18:23:46:846 | 0.493 | 0.428 |
3 | 1000 | 18:23:55:867 | 18:23:56:356 | 0.489 | 0.428 |
4 | 1200 | 18:29:09:427 | 18:29:10:065 | 0.638 | 0.594 |
5 | 1200 | 16:29:10:112 | 16:29:10:804 | 0.692 | 0.594 |
6 | 1200 | 16:29:19:894 | 16:29:20:565 | 0.671 | 0.594 |
7 | 1500 | 16:37:26:395 | 16:37:27:279 | 0.884 | 0.813 |
8 | 1500 | 16:37:36:218 | 16:37:37:103 | 0.865 | 0.813 |
9 | 1500 | 16:37:47:102 | 16:37:47:993 | 0.891 | 0.813 |
10 | 2000 | 16:57:38:541 | 16:57:40:019 | 1.478 | 1.324 |
11 | 2000 | 16:57:49:086 | 16:57:50:592 | 1.506 | 1.324 |
12 | 2000 | 16:58:01:139 | 16:58:02:631 | 1.492 | 1.324 |
Number of Predictions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
LSTM RMSE | 0.823 | 0.817 | 0.817 | 0.821 | 0.820 | 0.809 | 0.822 | 0.821 | 0.820 | 0.814 |
ARIMA RMSE | 0.844 | 0.839 | 0.839 | 0.844 | 0.843 | 0.831 | 0.840 | 0.838 | 0.835 | 0.826 |
LSTM Weights | 0.506 | 0.507 | 0.507 | 0.507 | 0.507 | 0.507 | 0.505 | 0.505 | 0.505 | 0.504 |
ARIMA Weights | 0.494 | 0.493 | 0.493 | 0.493 | 0.493 | 0.493 | 0.495 | 0.495 | 0.495 | 0.496 |
Number of Predictions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
LSTM–ARIMA dynamic weighting prediction error (KN) | 0.28 | 0.19 | 0.10 | 0.21 | 0.15 | 0.33 | 0.16 | 0.04 | 0.28 | 0.22 |
LSTM–ARIMA fixed weighting Forecast error (KN) | 0.18 | 0.33 | 0.06 | 0.22 | 0.39 | 0.53 | 0.25 | 0.14 | 0.36 | 0.32 |
LSTM Prediction Error (KN) | 0.20 | 0.45 | 0.11 | 0.09 | 0.89 | 0.81 | 0.29 | 0.19 | 0.96 | 0.23 |
ARIMA Prediction Error (KN) | 0.15 | 0.59 | 0.02 | 0.24 | 0.71 | 0.66 | 0.42 | 0.07 | 0.77 | 0.40 |
RNN Prediction Error (KN) | 0.42 | 0.83 | 0.82 | 1.56 | 2.24 | 0.71 | 2.02 | 0.44 | 2.06 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Che, Y.; Wang, L.; Yuan, R. Design of a Tunnel Anchor Monitoring System Based on Long Short-Term Memory–Autoregressive Integrated Moving Average Prediction. Electronics 2024, 13, 2840. https://doi.org/10.3390/electronics13142840
Qi J, Che Y, Wang L, Yuan R. Design of a Tunnel Anchor Monitoring System Based on Long Short-Term Memory–Autoregressive Integrated Moving Average Prediction. Electronics. 2024; 13(14):2840. https://doi.org/10.3390/electronics13142840
Chicago/Turabian StyleQi, Junyan, Yuhao Che, Lei Wang, and Ruifu Yuan. 2024. "Design of a Tunnel Anchor Monitoring System Based on Long Short-Term Memory–Autoregressive Integrated Moving Average Prediction" Electronics 13, no. 14: 2840. https://doi.org/10.3390/electronics13142840
APA StyleQi, J., Che, Y., Wang, L., & Yuan, R. (2024). Design of a Tunnel Anchor Monitoring System Based on Long Short-Term Memory–Autoregressive Integrated Moving Average Prediction. Electronics, 13(14), 2840. https://doi.org/10.3390/electronics13142840