A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization
Abstract
:1. Introduction
- (1)
- An elite dynamic opposite learning strategy is proposed to select elite individuals in the initial population and individuals after dynamic opposite learning to form a new population and select high-quality individuals as new populations, which improves the problem of uncertain quality of the initial population solution.
- (2)
- To enhance the global optimization capability of the algorithm, a staged inertial weight guidance mechanism is proposed, which improves the position update method for the discoverer.
- (3)
- To address the vulnerability of the sparrow search algorithm to local optima, the proposed approach introduces the improved beetle antennae search algorithm and the logarithmic spiral opposition-based learning using a greedy strategy. These enhancements are incorporated into the position update mechanism of the sparrow vigilante, effectively improving the algorithm’s local optimization performance.
- (4)
- The IBSSA algorithm is applied to engineering optimization problems in order to evaluate its practicality and effectiveness. Through this application, the improved algorithm’s performance and efficacy can be verified in real-world scenarios.
2. Sparrow Search Algorithm
3. Improved Sparrow Search Algorithm
3.1. Justification for These Improvement Strategies
3.2. Elite Dynamic Opposite Learning
3.3. Improved Discoverer Update Formula
3.4. Fusion of Greedy Strategy to Improve Search Algorithm of Beetle Antennae Search Algorithm and Sparrow
3.4.1. Logarithmic Spiral Opposition-Based Learning
3.4.2. Hybrid Search Algorithm of Beetle Antennae Search and Sparrow
4. Time Complexity Analysis
5. Pseudocode of IBSSA
Algorithm 1. IBSSA |
Import: |
: Initial step size of beetle antennae algorithm. |
Output: |
: the fitness value associated with the optimal position. |
1: Initialize the population using Formula (4) |
3: Sort the population based on fitness values to identify the best and worst individuals. |
5: Update the discoverer’s position according to Formula (6) |
6: end for |
8: Update follower position according to Formula (2) |
9: end for |
11: According to the Formulas (8)–(13) and Formula (3), update the beetle’s step length, the position of the tentacles, and the position of the sparrow vigilante, and calculate the fitness of the two. |
12: Greedy selection of optimal fitness through Formula (14) |
13: end for |
14: Obtain a new population. |
15: Update the position if the new position is superior to the current position. |
17: end while |
18: Return the objective function value. |
6. Analysis of Experimental Results
6.1. Benchmark Function Experiments
6.2. CEC2017 Function Test
6.2.1. CEC2017 Function Comparison under 10 Dimensions
6.2.2. CEC2017 Function Comparison under 30 Dimensions
6.2.3. CEC2017 Function Comparison under 50 Dimensions
6.2.4. CEC2017 Ablation Experiment
7. Application of Engineering Optimization Problems
7.1. Three Truss Problems
7.2. WBD
7.3. CSD
7.4. PVD
7.5. Vertical Deflection of an I-Beam
7.6. Gear Train Design
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pepelyshev, A.; Zhigljavsky, A.; Žilinskas, A. Performance of global random search algorithms for large dimensions. J. Glob. Optim. 2018, 71, 57–71. [Google Scholar] [CrossRef]
- Bullock, G.N.; Denham, M.J.; Parmee, I.C.; Wade, J.G. Developments in the use of the genetic algorithm in engineering design. Des. Stud. 1995, 16, 507–524. [Google Scholar] [CrossRef]
- Gajpal, Y.; Rajendran, C. An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops. Int. J. Prod. Econ. 2006, 101, 259–272. [Google Scholar] [CrossRef]
- Fang, H.; Chen, L.; Shen, Z. Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor. Energy Convers. Manag. 2011, 52, 1763–1770. [Google Scholar] [CrossRef]
- Niculescu, S.P. Artificial neural networks and genetic algorithms in QSAR. J. Mol. Struct. THEOCHEM 2003, 622, 71–83. [Google Scholar] [CrossRef]
- Kumru, M. Assessing the visual quality of sanitary ware by fuzzy logic. Appl. Soft Comput. 2013, 13, 3646–3656. [Google Scholar] [CrossRef]
- Peng, F.; Cui, G. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm. Appl. Therm. Eng. 2015, 78, 136–149. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, S.; Huang, Z.; Zhou, C.; Zhang, L. A JAYA algorithm based on normal clouds for DNA sequence optimization. Clust. Comput. 2023, 27, 2133–2149. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, S.; Zhou, C.; Yan, S. Manta ray foraging optimization based on mechanics game and progressive learning for multiple optimization problems. Appl. Soft Comput. 2023, 145, 110561. [Google Scholar] [CrossRef]
- Rambabu, D.; Govardhan, A. Optimization assisted frequent pattern mining for data replication in cloud: Combining sealion and grey wolf algorithm. Adv. Eng. Softw. 2023, 176, 103401. [Google Scholar]
- Zhang, Y.; Hou, X. Application of video image processing in sports action recognition based on particle swarm optimization algorithm. Prev. Med. 2023, 173, 107592. [Google Scholar] [CrossRef]
- Fahmy, H.; El-Gendy, E.M.; Mohamed, M.A.; Saafan, M.M. ECH3OA: An Enhanced Chimp-Harris Hawks Optimization Algorithm for copyright protection in Color Images using watermarking techniques. Knowl. Based Syst. 2023, 269, 110494. [Google Scholar] [CrossRef]
- Zhang, F.; Deng, S.; Zhao, H.; Liu, X. A new hybrid method based on sparrow search algorithm optimized extreme learning machine for brittleness evaluation. J. Appl. Geophys. 2022, 207, 104845. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, Z.; Liao, S.; Zhou, C.; Yan, S.; Chen, G. Improved Bare Bones Particle Swarm Optimization for DNA Sequence Design. IEEE Trans. NanoBiosci. 2023, 22, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Nie, Z.; Yang, Q.; Wang, Y.; Liu, D.; Jeon, S.; Zhang, J. Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems. Inf. Sci. 2023, 633, 321–342. [Google Scholar] [CrossRef]
- Sui, F.; Tang, X.; Dong, H.; Gen, X.; Luo, P.; Sun, J. ACO+PSO+A*: A bi-layer hybrid algorithm for multi-task path planning of an AUV. Comput. Ind. Eng. 2023, 175, 108905. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, D.; Wang, X. Shortest Path Planning Based on Improved Ant Colony Algorithm. ASP Trans. Comput. 2021, 1, 6–11. [Google Scholar]
- Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020, 53, 2237–2264. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.; Gondomi, A. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Tubishat, M.; Alswaitti, M.; Mirjalili, S.; Al-Garadi, M.; Alrashdan, M.T.; Rana, T.A. Dynamic Butterfly Optimization Algorithm for Feature Selection. IEEE Access 2020, 8, 194303–194314. [Google Scholar] [CrossRef]
- Pan, J.; Lv, J.; Yan, L.; Weng, S.; Chu, S.; Xue, J. Golden eagle optimizer with double learning strategies for 3D path planning of UAV in power inspection. Math. Comput. Simul. 2022, 193, 509–532. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, G.; Zhou, K.; Zhu, L. A parallel particle swarm optimization and enhanced sparrow search algorithm for unmanned aerial vehicle path planning. Heliyon 2023, 9, 14784. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, G. An Adaptive Sinusoidal-Disturbance-Strategy Sparrow Search Algorithm and Its Application. Sensors 2022, 22, 8787. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, D.; Liu, Y.; Wang, X. Multi-strategy sparrow search algorithm with non-uniform mutation. Syst. Sci. Control Eng. 2022, 10, 936–954. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Chen, C.; Li, Z.; Li, J. ISSA-ELM: A Network Security Situation Prediction Model. Electronics 2023, 12, 25. [Google Scholar] [CrossRef]
- Xue, Z.; Yu, J.; Zhao, A.; Zhong, Y.; Yang, S.; Wang, M. Optimal chiller loading by improved sparrow search algorithm for saving energy consumption. J. Build. Eng. 2023, 67, 105980. [Google Scholar] [CrossRef]
- Liu, R.; Mo, Y. Performance of a Novel Enhanced Sparrow Search Algorithm for Engineering Design Process: Coverage Optimization in Wireless Sensor Network. Processes 2022, 10, 1691. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, E. An improved sparrow search based intelligent navigational algorithm for local path planning of mobile robot. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 14111–14123. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, A.; Han, Y.; Nan, J.; Li, K. Fast stochastic configuration network based on an improved sparrow search algorithm for fire flame recognition. Knowl. Based Syst. 2022, 245, 108626. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z. A Hybrid Sparrow Search Algorithm Based on Constructing Similarity. IEEE Access 2021, 9, 117581–117595. [Google Scholar]
- Gao, B.; Shen, W.; Guan, H.; Zheng, L.; Zhang, W. Research on Multistrategy Improved Evolutionary Sparrow Search Algorithm and its Application. IEEE Access 2022, 10, 62520–62534. [Google Scholar] [CrossRef]
- Liu, G.; Shu, C.; Liang, Z.; Liang, Z.; Peng, B.; Cheng, L. A Modified Sparrow Search Algorithm with Application in 3d Route Planning for UAV. Sensors 2021, 21, 1224. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, X.; Zhu, D. A Multistrategy-Integrated Learning Sparrow Search Algorithm and Optimization of Engineering Problems. Comput. Intell. Neurosci. 2022, 2022, 2475460. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Žilinskas, A.; Calvin, J. Bi-objective decision making in global optimization based on statistical models. J. Glob. Optim. 2019, 74, 599–609. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Z.; Li, X.; Kang, H.; Yang, X. Dynamic opposite learning enhanced teaching–learning-based optimization. Knowl. Based Syst. 2020, 188, 104966. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, K.; Li, P. An Improved Chaos Sparrow Search Optimization Algorithm Using Adaptive Weight Modification and Hybrid Strategies. IEEE Access 2020, 10, 96159–96179. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Izci, D.; Ekinci, S.; Eker, E.; Kayri, M. Augmented hunger games search algorithm using logarithmic spiral opposition-based learning for function optimization and controller design. J. King Saud Univ. Eng. Sci. 2022, in press, corrected proof. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. arXiv 2017, arXiv:1710.10724. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, D.; Wang, F. A Learning Sparrow Search Algorithm. Comput. Intell. Neurosci. 2021, 2021, 23. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, Y. Short term photovoltaic power prediction based on BP neural network optimized by improved sparrow search algorithm. In Proceedings of the 2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 9–11 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 314–317. [Google Scholar]
- Mirjalili, S.; Lewis, A. Adaptive gbest-guided gravitational search algorithm. Neural Comput. Appl. 2014, 25, 1569–1584. [Google Scholar] [CrossRef]
- Mohammad, H.; Nadimi, S.; Shokooh, T. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2014, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Wu, R.; Huang, H.; Wei, J. An improved sparrow search algorithm based on quantum computations and multi-strategy enhancement. Expert Syst. Appl. 2023, 215, 119421. [Google Scholar] [CrossRef]
- Naik, M.K.; Panda, R.; Wunnava, A. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed. Tools Appl. 2021, 80, 35543–35583. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef] [PubMed]
- Oszust, M. Enhanced Marine Predators Algorithm with Local Escaping Operator for Global Optimization. Knowl. Based Syst. 2021, 232, 107467. [Google Scholar] [CrossRef]
- Minocha, S.; Singh, B. A novel equilibrium optimizer based on levy flight and iterative cosine operator for engineering optimization problems. Expert Syst. 2022, 39, e12843. [Google Scholar] [CrossRef]
Algorithm | Parameter Settings |
---|---|
SSA | |
LSSA | |
TSSA | |
GGSA | |
IGWO | |
DBO | |
WOA | |
SCA | |
BAS | |
IBSSA |
Formula | Dim | Range | Min |
---|---|---|---|
−12569.5 | |||
F | Index | SSA | LSSA | TSSA | GGSA | IGWO | DBO | WOA | SCA | BAS | IBSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
Min | 7.295 × 10−247 | 0.000 × 10+00 | 4.961 × 10−318 | 6.311 × 10−19 | 2.532 × 10−56 | 2.380 × 10−392 | 3.664 × 10−133 | 3.592 × 10−06 | 4.084 × 10+04 | 0.000 × 10+00 | |
F1 | Mean | 1.534 × 10−72 | 4.800 × 10−282 | 4.870 × 10−70 | 2.712 × 10−18 | 8.070 × 10−53 | 3.152 × 10−241 | 8.572 × 10−108 | 2.088 × 10−02 | 5.330 × 10+04 | 0.000 × 10+00 |
Std | 8.400 × 10−72 | 0.000 × 10+00 | 2.666 × 10−69 | 1.586 × 10−18 | 2.978 × 10−52 | 0.000 × 10+00 | 4.691 × 10−107 | 7.788 × 10−02 | 5.564 × 10+03 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 1.166 × 10−01 | 1.567 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | ||
Min | 1.140 × 10−81 | 5.291 × 10−253 | 6.168 × 10−70 | 3.611 × 10−09 | 7.415 × 10−33 | 1.422 × 10−152 | 1.515 × 10−131 | 2.918 × 10−07 | 1.112 × 10+02 | 0.000 × 10+00 | |
F2 | Mean | 2.242 × 10−40 | 4.068 × 10−162 | 6.708 × 10−40 | 1.046 × 10−08 | 2.463 × 10−31 | 2.589 × 10−121 | 1.302 × 10−107 | 3.231 × 10−05 | 1.297 × 10+02 | 0.000 × 10+00 |
Std | 1.164 × 10−39 | 2.223 × 10−161 | 2.545 × 10−39 | 9.405 × 10−09 | 3.531 × 10−31 | 1.411 × 10−120 | 6.815 × 10−107 | 1.141 × 10−04 | 1.035 × 10+01 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | ||
Min | 6.104 × 10−94 | 0.000 × 10+00 | 8.836 × 10−296 | 1.965 × 10+02 | 1.417 × 10−17 | 1.034 × 10−275 | 7.990 × 10+03 | 4.137 × 10+01 | 3.866 × 10+04 | 0.000 × 10+00 | |
F3 | Mean | 2.643 × 10−36 | 4.297 × 10−279 | 1.926 × 10−36 | 4.084 × 10+02 | 6.274 × 10−13 | 7.370 × 10−111 | 2.685 × 10+04 | 3.706 × 10+03 | 7.076 × 10+04 | 0.000 × 10+00 |
Std | 8.461 × 10−3 | 0.000 × 10+00 | 8.692 × 10−36 | 1.484 × 10+02 | 1.916 × 10−12 | 4.037 × 10−110 | 9.612 × 10+03 | 4.501 × 10+03 | 2.006 × 10+04 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 3.255 × 10−01 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | ||
Min | 1.200 × 10−173 | 6.614 × 10−224 | 4.40 × 10−248 | 5.144 × 10−09 | 1.369 × 10−15 | 1.025 × 10−151 | 7.487 × 10−05 | 2.278 × 10+00 | 6.240 × 10+01 | 0.000 × 10+00 | |
F4 | Mean | 3.836 × 10−35 | 1.120 × 10−146 | 1.374 × 10−32 | 1.310 × 10+00 | 2.132 × 10−14 | 2.480 × 10−111 | 2.675 × 10+01 | 2.221 × 10+01 | 7.343 × 10+01 | 0.000 × 10+00 |
Std | 2.030 × 10−34 | 6.133 × 10−146 | 7.526 × 10−32 | 9.926 × 10−01 | 2.839 × 10−14 | 1.226 × 10−110 | 2.712 × 10+01 | 1.357 × 10+01 | 4.284 × 10+00 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | ||
Min | 3.832 × 10−10 | 4.167 × 10−11 | 2.586 × 10−11 | 2.521 × 10+01 | 2.527 × 10+01 | 2.473 × 10+01 | 2.624 × 10+01 | 2.784 × 10+01 | 3.243 × 10+07 | 2.146 × 10−17 | |
F5 | Mean | 8.214 × 10−06 | 2.227 × 10−06 | 8.934 × 10−06 | 3.132 × 10+01 | 2.684 × 10+01 | 2.496 × 10+01 | 2.794 × 10+01 | 7.759 × 10+02 | 5.619 × 10+07 | 6.141 × 10−06 |
Std | 1.993 × 10−05 | 1.069 × 10−05 | 2.229 × 10−05 | 2.114 × 10+01 | 8.309 × 10−01 | 1.353 × 10−01 | 7.924 × 10−01 | 1.345 × 10−03 | 1.420 × 10+07 | 1.856 × 10−05 | |
P | 2.921 × 10−02 | 8.303 × 10−01 | 3.778 × 10−02 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | ||
Min | 9.762 × 10−22 | 3.663 × 10−21 | 3.433 × 10−24 | 5.240 × 10−19 | 4.494 × 10−08 | 3.226 × 10−11 | 2.953 × 10−01 | 3.922 × 10+00 | 3.615 × 10+04 | 4.376 × 10−31 | |
F6 | Mean | 1.253 × 10−18 | 4.516 × 10−18 | 3.931 × 10−19 | 2.549 × 10−18 | 5.668 × 10−01 | 2.391 × 10−08 | 1.518 × 10+00 | 4.743 × 10+00 | 5.289 × 10+04 | 2.184 × 10−20 |
Std | 4.229 × 10−18 | 1.274 × 10−17 | 1.286 × 10−18 | 1.950 × 10−18 | 3.543 × 10−01 | 7.112 × 10−08 | 9.205 × 10−01 | 7.638 × 10−01 | 5.835 × 10+03 | 5.721 × 10−20 | |
P | 9.514 × 10−06 | 4.616 × 10−10 | 8.684 × 10−03 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | ||
Min | 1.054 × 10−04 | 3.194 × 10−05 | 4.249 × 10−05 | 2.186 × 10−02 | 1.867 × 10−04 | 6.751 × 10−05 | 1.212 × 10−04 | 3.284 × 10−03 | 7.473 × 10+02 | 2.258 × 10−05 | |
F7 | Mean | 1.172 × 10−03 | 4.322 × 10−04 | 1.131 × 10−03 | 3.387 × 10−01 | 8.085 × 10−04 | 7.676 × 10−04 | 3.753 × 10−03 | 2.357 × 10−02 | 1.178 × 10+02 | 4.140 × 10−04 |
Std | 7.640 × 10−04 | 3.607 × 10−04 | 9.135 × 10−04 | 1.084 × 10+00 | 4.436 × 10−04 | 5.452 × 10−04 | 3.776 × 10−03 | 1.736 × 10−02 | 2.517 × 10+01 | 3.758 × 10−04 | |
P | 1.635 × 10−05 | 6.952 × 10−01 | 1.681 × 10−04 | 3.020 × 10−11 | 1.585 × 10−04 | 4.856 × 10−03 | 4.311 × 10−08 | 3.020 × 10−11 | 3.020 × 10−11 | ||
Min | −9.895 × 10+03 | −1.257 × 10+04 | −1.045 × 10+04 | −3.862 × 10+03 | −7.606 × 10+03 | −1.257 × 10+04 | −1.168 × 10+04 | −4.356 × 10+03 | −4.112 × 10+03 | −1.257 × 10+04 | |
F8 | Mean | −8.895 × 10+03 | −1.123 × 10+04 | −8.888 × 10+03 | −2.853 × 10+03 | −6.118 × 10+03 | −9.317 × 10+03 | −8.737 × 10+03 | −3.886 × 10+03 | −2.930 × 10+03 | −8.501 × 10+03 |
Std | 6.764 × 10+02 | 1.507 × 10+03 | 7.575 × 10+02 | 4.919 × 10+02 | 6.877 × 10+02 | 2.064 × 10+03 | 9.324 × 10+02 | 2.624 × 10+02 | 5.443 × 10+02 | 1.935 × 10+03 | |
P | 9.823 × 10−01 | 7.600 × 10−05 | 3.183 × 10−01 | 3.020 × 10−11 | 2.154 × 10−06 | 4.376 × 10−01 | 8.650 × 10−01 | 3.020 × 10−11 | 3.020 × 10−11 | ||
Min | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 1.990 × 10+01 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 4.089 × 10−05 | 3.871 × 10+02 | 0.000 × 10+00 | |
F9 | Mean | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 3.333 × 10+01 | 1.541 × 10−01 | 3.350 × 10+00 | 2.102 × 10−01 | 1.959 × 10+01 | 4.411 × 10+02 | 0.000 × 10+00 |
Std | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 1.018 × 10+01 | 8.440 × 10−01 | 1.835 × 10−01 | 1.151 × 10+00 | 2.196 × 10+01 | 2.193 × 10+01 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 4.187 × 10−02 | 3.337 × 10−01 | 3.337 × 10−01 | 1.212 × 10−12 | 1.212 × 10−12 | |||||
Min | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 4.369 × 10−10 | 7.994 × 10−15 | 8.882 × 10−16 | 8.882 × 10−16 | 2.602 × 10−04 | 1.926 × 10+01 | 8.882 × 10−16 | |
F10 | Mean | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 1.258 × 10−09 | 1.332 × 10−14 | 1.125 × 10−15 | 4.204 × 10−15 | 1.463 × 10+01 | 1.969 × 10+01 | 8.882 × 10−16 |
Std | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 4.557 × 10−10 | 2.913 × 10−15 | 9.014 × 10−16 | 1.598 × 10−15 | 8.554 × 10+00 | 1.803 × 10−01 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 3.121 × 10−13 | 1.607 × 10−01 | 3.387 × 10−11 | 1.212 × 10−12 | 1.212 × 10−12 | |||||
Min | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 4.229 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 3.580 × 10−06 | 4.403 × 10+02 | 0.000 × 10+00 | |
F11 | Mean | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 7.66 × 10+00 | 2.384 × 10−03 | 3.442 × 10−03 | 2.270 × 10−03 | 2.560 × 10−01 | 5.866 × 10+02 | 0.000 × 10+00 |
Std | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 2.411 × 10+00 | 6.452 × 10−03 | 1.460 × 10−02 | 1.243 × 10−02 | 2.232 × 10−01 | 7.500 × 10+01 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 4.193 × 10−02 | 1.608 × 10−01 | 3.337 × 10−01 | 1.212 × 10−12 | 1.212 × 10−12 | |||||
Min | 1.676 × 10−23 | 2.790 × 10−24 | 4.687 × 10−23 | 5.542 × 10−21 | 6.650 × 10−03 | 5.661 × 10−13 | 6.802 × 10−03 | 3.773 × 10−01 | 6.963 × 10+07 | 2.757 × 10−25 | |
F12 | Mean | 4.209 × 10−20 | 3.750 × 10−20 | 1.288 × 10−19 | 1.590 × 10−01 | 4.023 × 10−02 | 9.573 × 10−06 | 2.876 × 10−01 | 1.211 × 10+00 | 1.343 × 10+07 | 8.570 × 10−21 |
Std | 1.512 × 10−19 | 1.376 × 10−19 | 3.145 × 10−19 | 3.067 × 10−01 | 2.134 × 10−02 | 5.243 × 10−05 | 1.048 × 10+00 | 1.137 × 10+00 | 4.727 × 10+07 | 2.273 × 10−20 | |
P | 1.335 × 10−01 | 5.298 × 10−01 | 4.427 × 10−03 | 1.691 × 10−09 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | ||
Min | 1.482 × 10−23 | 1.825 × 10−22 | 7.868 × 10−24 | 4.822 × 10−20 | 2.855 × 10−01 | 1.070 × 10−08 | 4.625 × 10−01 | 1.923 × 10+00 | 1.864 × 10+08 | 2.220 × 10−26 | |
F13 | Mean | 2.170 × 10−18 | 5.353 × 10−19 | 8.000 × 10−19 | 1.156 × 10−01 | 5.411 × 10−01 | 2.708 × 10−01 | 1.463 × 10+00 | 9.523 × 10+00 | 3.558 × 10+08 | 1.960 × 10−19 |
Std | 7.535 × 10−18 | 1.591 × 10−18 | 1.931 × 10−18 | 4.033 × 10−01 | 1.941 × 10−01 | 2.815 × 10−01 | 4.929 × 10−01 | 1.131 × 10+01 | 9.194 × 10+07 | 6.146 × 10−19 | |
P | 3.387 × 10−02 | 1.188 × 10−01 | 7.959 × 10−03 | 1.248 × 10−07 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | 3.020 × 10−11 | ||
Min | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | |
F14 | Mean | 7.620 × 10+00 | 1.196 × 10+00 | 5.031 × 10+00 | 3.522 × 10+00 | 3.544 × 10+00 | 1.329 × 10+00 | 6.824 × 10+00 | 1.527 × 10+00 | 1.130 × 10+00 | 9.980 × 10−01 |
Std | 5.539 × 10+00 | 6.054 × 10−01 | 5.039 × 10+00 | 3.124 × 10+00 | 3.940 × 10+00 | 7.515 × 10−01 | 4.864 × 10+00 | 8.924 × 10−01 | 4.310 × 10−01 | 1.047 × 10−16 | |
P | 1.211 × 10−07 | 8.149 × 10−02 | 2.880 × 10−05 | 5.392 × 10−09 | 4.376 × 10−12 | 1.102 × 10−02 | 4.488 × 10−12 | 1.212 × 10−12 | 2.157 × 10−02 | ||
Min | 3.074 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | 7.212 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | 3.110 × 10−04 | 3.672 × 10−04 | 1.026 × 10−03 | 3.074 × 10−04 | |
F15 | Mean | 3.410 × 10−04 | 3.414 × 10−04 | 5.900 × 10−04 | 2.058 × 10−03 | 3.015 × 10−03 | 6.532 × 10−04 | 6.439 × 10−04 | 9.250 × 10−04 | 1.515 × 10−03 | 3.390 × 10−04 |
Std | 1.670 × 10−04 | 1.668 × 10−04 | 4.227 × 10−04 | 7.447 × 10−04 | 6.923 × 10−03 | 2.750 × 10−04 | 4.281 × 10−04 | 3.717 × 10−04 | 4.284 × 10−04 | 5.790 × 10−05 | |
P | 4.129 × 10−01 | 9.941 × 10−01 | 5.365 × 10−01 | 2.928 × 10−11 | 6.632 × 10−03 | 1.657 × 10−08 | 1.077 × 10−08 | 1.171 × 10−10 | 2.928 × 10−11 | ||
Min | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | |
F16 | Mean | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.022 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 |
Std | 5.454 × 10−16 | 5.758 × 10−16 | 5.975 × 10−16 | 5.904 × 10−16 | 4.838 × 10−02 | 6.253 × 10−16 | 3.203 × 10−12 | 2.740 × 10−05 | 5.532 × 10−16 | 5.454 × 10−16 | |
P | 1.212 × 10−12 | 1.698 × 10−08 | 1.212 × 10−12 | ||||||||
Min | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | |
F17 | Mean | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 |
Std | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 2.540 × 10−04 | 0.000 × 10+00 | 3.209 × 10−07 | 1.068 × 10−03 | 0.000 × 10+00 | 0.000 × 10+00 | |
P | 1.212 × 10−12 | 1.212 × 10−12 | 1.698 × 10−08 | 1.212 × 10−12 | |||||||
Min | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | |
F18 | Mean | 3.900 × 10+00 | 4.800 × 10+00 | 4.800 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 |
Std | 4.930 × 10+00 | 6.850 × 10+00 | 6.850 × 10+00 | 2.154 × 10−15 | 9.722 × 10−06 | 2.511 × 10−15 | 2.564 × 10−03 | 6.819 × 10−05 | 5.555 × 10−15 | 5.539 × 10−04 | |
P | 8.813 × 10−03 | 7.373 × 10−02 | 3.641 × 10−02 | 6.181 × 10−01 | 6.554 × 10−04 | 2.738 × 10−01 | 2.463 × 10−07 | 3.320 × 10−04 | 6.181 × 10−01 | ||
Min | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | |
F19 | Mean | −3.837 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.855 × 10+00 | −3.370 × 10+00 | −3.863 × 10+00 |
Std | 1.411 × 10−01 | 2.319 × 10−15 | 2.297 × 10−15 | 2.987 × 10−03 | 2.852 × 10−03 | 3.391 × 10−03 | 7.821 × 10−03 | 1.935 × 10−03 | 4.295 × 10−01 | 2.279 × 10−15 | |
P | 3.337 × 10−01 | 2.150 × 10−02 | 1.212 × 10−12 | 5.466 × 10−03 | 1.212 × 10−12 | 1.212 × 10−12 | 1.212 × 10−12 | ||||
Min | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.178 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | |
F20 | Mean | −3.263 × 10+00 | −3.263 × 10+00 | −3.270 × 10+00 | −2.846 × 10+00 | −3.250 × 10+00 | −3.218 × 10+00 | −3.118 × 10+00 | −2.895 × 10+00 | −2.179 × 10+00 | −3.310 × 10+00 |
Std | 6.046 × 10−02 | 6.046 × 10−02 | 5.992 × 10−02 | 7.392 × 10−01 | 7.768 × 10−02 | 8.086 × 10−02 | 3.358 × 10−01 | 3.313 × 10−01 | 7.975 × 10−01 | 3.628 × 10−02 | |
P | 8.287 × 10−04 | 8.287 × 10−04 | 3.911 × 10−04 | 8.925 × 10−05 | 3.542 × 10−10 | 3.044 × 10−06 | 1.940 × 10−10 | 3.151 × 10−12 | 1.603 × 10−11 | ||
Rank | 4.45 | 3.025 | 4.4 | 6.66 | 6.43 | 4.76 | 7.00 | 7.88 | 8.23 | 2.175 |
F | Index | SSA1 | SSA2 | SSA3 | SSA4 | SSA5 | SSA6 | SSA | IBSSA |
---|---|---|---|---|---|---|---|---|---|
Min | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 7.295 × 10−247 | 0.000 × 10+00 | |
F1 | Mean | 6.916 × 10−78 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 1.534 × 10−72 | 0.000 × 10+00 |
Std | 3.788 × 10−77 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 8.400 × 10−72 | 0.000 × 10+00 | |
Min | 0.000 × 10+00 | 1.324 × 10−175 | 0.000 × 10+00 | 1.756 × 10−178 | 0.000 × 10+00 | 0.000 × 10+00 | 1.140 × 10−81 | 0.000 × 10+00 | |
F2 | Mean | 3.772 × 10−41 | 2.395 × 10−165 | 0.000 × 10+00 | 8.243 × 10−165 | 0.000 × 10+00 | 0.000 × 10+00 | 2.242 × 10−40 | 0.000 × 10+00 |
Std | 1.479 × 10−40 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 1.164 × 10−39 | 0.000 × 10+00 | |
Min | 0.000 × 10+00 | 5.281 × 10−251 | 0.000 × 10+00 | 8.040 × 10−250 | 0.000 × 10+00 | 0.000 × 10+00 | 6.104 × 10−94 | 0.000 × 10+00 | |
F3 | Mean | 4.485 × 10−34 | 7.600 × 10−218 | 0.000 × 10+00 | 5.446 × 10−223 | 0.000 × 10+00 | 0.000 × 10+00 | 2.643 × 10−36 | 0.000 × 10+00 |
Std | 2.456 × 10−33 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 8.461 × 10−3 | 0.000 × 10+00 | |
Min | 0.000 × 10+00 | 3.649 × 10−197 | 0.000 × 10+00 | 3.919 × 10−188 | 0.000 × 10+00 | 0.000 × 10+00 | 1.200 × 10−173 | 0.000 × 10+00 | |
F4 | Mean | 7.182 × 10−38 | 3.473 × 10−170 | 0.000 × 10+00 | 3.428 × 10−169 | 0.000 × 10+00 | 0.000 × 10+00 | 3.836 × 10−35 | 0.000 × 10+00 |
Std | 3.425 × 10−37 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 2.030 × 10−34 | 0.000 × 10+00 | |
Min | 7.826 × 10−12 | 6.460 × 10−12 | 2.544 × 10−11 | 5.227 × 10−14 | 1.814 × 10−12 | 2.242 × 10−12 | 3.832 × 10−10 | 2.146 × 10−17 | |
F5 | Mean | 3.552 × 10−06 | 3.940 × 10−06 | 6.557 × 10−06 | 1.083 × 10−05 | 6.468 × 10−06 | 1.853 × 10−05 | 8.214 × 10−06 | 6.141 × 10−06 |
Std | 1.287 × 10−05 | 1.164 × 10−05 | 2.192 × 10−05 | 4.663 × 10−05 | 1.416 × 10−05 | 4.987 × 10−05 | 1.993 × 10−05 | 1.856 × 10−05 | |
Min | 1.423 × 10−22 | 2.128 × 10−24 | 1.428 × 10−23 | 9.036 × 10−26 | 1.852 × 10−22 | 1.223 × 10−29 | 9.762 × 10−22 | 4.376 × 10−31 | |
F6 | Mean | 3.567 × 10−19 | 2.468 × 10−19 | 5.370 × 10−19 | 1.903 × 10−19 | 2.160 × 10−19 | 1.886 × 10−19 | 1.253 × 10−18 | 2.184 × 10−20 |
Std | 7.836 × 10−19 | 1.100 × 10−18 | 1.565 × 10−18 | 9.263 × 10−19 | 4.501 × 10−19 | 6.537 × 10−19 | 4.229 × 10−18 | 5.721 × 10−20 | |
Min | 1.389 × 10−04 | 3.948 × 10−05 | 3.651 × 10−05 | 1.981 × 10−05 | 5.188 × 10−05 | 9.341 × 10−05 | 1.054 × 10−04 | 2.258 × 10−05 | |
F7 | Mean | 1.332 × 10−03 | 5.664 × 10−04 | 7.131 × 10−04 | 5.685 × 10−04 | 7.928 × 10−04 | 7.333 × 10−04 | 1.172 × 10−03 | 4.140 × 10−04 |
Std | 1.291 × 10−03 | 4.700 × 10−04 | 5.421 × 10−04 | 4.326 × 10−04 | 1.078 × 10−03 | 6.948 × 10−04 | 7.640 × 10−04 | 3.758 × 10−04 | |
Min | −1.023 × 10+04 | −1.002 × 10+04 | −1.017 × 10+04 | −9.320 × 10+03 | −1.257 × 10+04 | −1.257 × 10+04 | −9.895 × 10+03 | −1.257 × 10+04 | |
F8 | Mean | −8.614 × 10+03 | −8.530 × 10+03 | −8.145 × 10+03 | −8.600 × 10+03 | −7.935 × 10+03 | −8.537 × 10+03 | −8.895 × 10+03 | −8.501 × 10+03 |
Std | 7.127 × 10+02 | 5.780 × 10+02 | 1.484 × 10+03 | 4.565 × 10+02 | 1.675 × 10+03 | 1.779 × 10+03 | 6.764 × 10+02 | 1.935 × 10+03 | |
Min | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | |
F9 | Mean | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 |
Std | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | |
Min | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | |
F10 | Mean | 8.882 × 10−16 | 1.243 × 10−15 | 8.882 × 10−16 | 1.480 × 10−15 | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 | 8.882 × 10−16 |
Std | 0.000 × 10+00 | 1.084 × 10−15 | 0.000 × 10+00 | 1.347 × 10−15 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | |
Min | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | |
F11 | Mean | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 |
Std | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | |
Min | 1.872 × 10−24 | 1.795 × 10−24 | 4.191 × 10−23 | 1.170 × 10−24 | 1.243 × 10−23 | 1.565 × 10−25 | 1.676 × 10−23 | 2.757 × 10−25 | |
F12 | Mean | 1.091 × 10−19 | 1.285 × 10−20 | 1.074 × 10−19 | 2.937 × 10−20 | 4.523 × 10−19 | 1.875 × 10−20 | 4.209 × 10−20 | 8.570 × 10−21 |
Std | 3.058 × 10−19 | 3.336 × 10−20 | 3.112 × 10−19 | 1.323 × 10−19 | 2.175 × 10−18 | 5.416 × 10−20 | 1.512 × 10−19 | 2.273 × 10−20 | |
Min | 5.684 × 10−23 | 7.261 × 10−25 | 8.581 × 10−25 | 3.297 × 10−24 | 3.386 × 10−23 | 2.240 × 10−23 | 1.482 × 10−23 | 2.220 × 10−26 | |
F13 | Mean | 1.093 × 10−18 | 1.945 × 10−19 | 5.575 × 10−20 | 2.320 × 10−19 | 1.808 × 10−18 | 1.212 × 10−18 | 2.170 × 10−18 | 1.960 × 10−19 |
Std | 3.576 × 10−18 | 5.030 × 10−19 | 1.214 × 10−19 | 9.580 × 10−19 | 4.800 × 10−18 | 3.292 × 10−18 | 7.535 × 10−18 | 6.146 × 10−19 | |
Min | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | 9.980 × 10−01 | |
F14 | Mean | 5.075 × 10+00 | 3.274 × 10+00 | 1.378 × 10+00 | 5.354 × 10+00 | 1.914 × 10+00 | 1.987 × 10+00 | 7.620 × 10+00 | 9.980 × 10−01 |
Std | 5.252 × 10+00 | 4.344 × 10+00 | 1.798 × 10+00 | 5.205 × 10+00 | 2.500 × 10+00 | 2.673 × 10+00 | 5.539 × 10+00 | 1.047 × 10−16 | |
Min | 3.074 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | 3.074 × 10−04 | |
F15 | Mean | 3.338 × 10−04 | 3.758 × 10−04 | 3.616 × 10−04 | 3.383 × 10−04 | 3.322 × 10−04 | 3.412 × 10−04 | 3.410 × 10−04 | 3.390 × 10−04 |
Std | 1.672 × 10−04 | 2.315 × 10−04 | 6.527 × 10−05 | 1.671 × 10−04 | 5.313 × 10−05 | 5.042 × 10−05 | 1.670 × 10−04 | 5.790 × 10−05 | |
Min | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | |
F16 | Mean | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 | −1.032 × 10+00 |
Std | 5.608 × 10−16 | 5.831 × 10−16 | 5.296 × 10−16 | 5.216 × 10−16 | 5.532 × 10−16 | 5.376 × 10−16 | 5.454 × 10−16 | 5.454 × 10−16 | |
Min | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | |
F17 | Mean | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 | 3.978 × 10−01 |
Std | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | 0.000 × 10+00 | |
Min | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | |
F18 | Mean | 3.900 × 10+00 | 3.900 × 10+00 | 3.900 × 10+00 | 3.900 × 10+00 | 3.000 × 10+00 | 3.000 × 10+00 | 3.900 × 10+00 | 3.000 × 10+00 |
Std | 4.930 × 10+00 | 3.900 × 10+00 | 4.918 × 10−04 | 3.900 × 10+00 | 1.074 × 10−04 | 3.642 × 10−03 | 3.900 × 10+00 | 5.539 × 10−04 | |
Min | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | |
F19 | Mean | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 | −3.863 × 10+00 |
Std | 2.297 × 10−15 | 2.361 × 10−15 | 2.287 × 10−15 | 2.270 × 10−15 | 2.380 × 10−15 | 2.270 × 10−15 | 1.411 × 10−01 | 2.279 × 10−15 | |
Min | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | −3.322 × 10+00 | |
F20 | Mean | −3.282 × 10+00 | −3.267 × 10+00 | −3.282 × 10+00 | −3.298 × 10+00 | −3.301 × 10+00 | −3.278 × 10+00 | −3.263 × 10+00 | −3.310 × 10+00 |
Std | 5.700 × 10−02 | 6.033 × 10−02 | 5.700 × 10−02 | 4.837 × 10−02 | 6.010 × 10−02 | 5.827 × 10−02 | 6.046 × 10−02 | 3.628 × 10−02 |
F | Index | BAS | AOA | POA | DBO | LMHHO | TSSA | QMESSA | LSSA | SSA | IBSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
Ave | 9.616 × 10+09 | 5.622 × 10+06 | 3.221 × 10+07 | 5.187 × 10+03 | 1.370 × 10+09 | 4.143 × 10+03 | 1.040 × 10+03 | 4.778 × 10+03 | 4.013 × 10+03 | 4.903 × 10+02 | |
F1 | Std | 4.748 × 10+09 | 2.529 × 10+07 | 1.075 × 10+08 | 3.943 × 10+03 | 9.795 × 10+09 | 3.352 × 10+03 | 1.365 × 10+03 | 3.588 × 10+03 | 3.612 × 10+03 | 2.778 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.555 × 10−07 (+) | 3.020 × 10−11 (+) | 5.091 × 10−06 (+) | 5.322 × 10−03 (+) | 8.891 × 10−10 (+) | 1.493 × 10−04 (+) | ||
Rank | 10 | 7 | 8 | 6 | 9 | 3 | 2 | 5 | 4 | 1 | |
Ave | 1930 × 10+04 | 3.234 × 10+02 | 3.965 × 10+02 | 3.000 × 10+02 | 4.568 × 10+03 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | |
F3 | Std | 6.666 × 10+03 | 8.876 × 10+01 | 2.270 × 10+02 | 1.267 × 10−13 | 1.758 × 10+03 | 3.950 × 10−14 | 4.504 × 10−13 | 6.333 × 10−14 | 7.237 × 10−14 | 7.828 × 10−14 |
P | 1.121 × 10−12 (+) | 1.121 × 10−12 (+) | 1.121 × 10−12 (+) | NaN | 1.121 × 10−12 (+) | NaN | 2.728 × 10−03 (+) | NaN | NaN | ||
Rank | 10 | 8 | 9 | 5 | 7 | 1 | 6 | 2 | 3 | 4 | |
Ave | 1.245 × 10+03 | 4.366 × 10+02 | 4.074 × 10+02 | 4.155 × 10+02 | 5.386 × 10+02 | 4.019 × 10+02 | 4.000 × 10+02 | 4.019 × 10+02 | 4.000 × 10+02 | 4.000 × 10+02 | |
F4 | Std | 5.816 × 10+02 | 4.239 × 10+02 | 8.217 × 10+00 | 2.441 × 10+01 | 1.052 × 10+02 | 1.015 × 10+01 | 7.956 × 10−02 | 1.015 × 10+01 | 9.683 × 10−02 | 5.74 × 10−02 |
P | 3.020 × 10−11 (+) | 4.975 × 10−11 (+) | 3.690 × 10−11 (+) | 4.504 × 10−11 (+) | 3.020 × 10−11 (+) | 3.478 × 10−01 (-) | 8.485 × 10−09 (+) | 3.010 × 10−07 (+) | 2.062 × 10−01 (-) | ||
10 | 8 | 5 | 7 | 9 | 4 | 2 | 6 | 3 | 1 | ||
Ave | 5.769 × 10+02 | 5.516 × 10+02 | 5.407 × 10+02 | 5.256 × 10+02 | 5.748 × 10+02 | 5.326 × 10+02 | 5.312 × 10+02 | 5.301 × 10+02 | 5.343 × 10+02 | 5.087 × 10+02 | |
F5 | Std | 1.922 × 10+01 | 1.406 × 10+01 | 1.604 × 10+01 | 9.419 × 10+00 | 2.057 × 10+01 | 1.539 × 10+01 | 1.156 × 10+01 | 1.298 × 10+01 | 1.270 × 10+01 | 1.406 × 10+00 |
P | 2.574 × 10−11 (+) | 2.574 × 10−11 (+) | 2.574 × 10−11 (+) | 1.862 × 10−10 (+) | 2.574 × 10−11 (+) | 2.574 × 10−11 (+) | 2.564 × 10−11 (+) | 2.574 × 10−11 (+) | 2.574 × 10−11 (+) | ||
Rank | 9 | 4 | 8 | 2 | 9 | 7 | 3 | 4 | 6 | 1 | |
Ave | 6.568 × 10+02 | 6.393 × 10+02 | 6.152 × 10+02 | 6.056 × 10+02 | 6.494 × 10+02 | 6.072 × 10+02 | 6.005 × 10+02 | 6.049 × 10+02 | 6.041 × 10+02 | 6.032 × 10+02 | |
F6 | Std | 8.657 × 10+00 | 6.640 × 10+00 | 1.070 × 10+01 | 4.567 × 10+00 | 1.294 × 10+01 | 6.877 × 10+00 | 1.141 × 10+00 | 8.243 × 10+00 | 5.784 × 10+00 | 3.052 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.010 × 10−08 (+) | 2.921 × 10−02 (+) | 3.020 × 10−11 (+) | 1.700 × 10−02 (+) | 4.460 × 10−04 (+) | 8.303 × 10−01 (-) | 7.506 × 10−01 (-) | ||
Rank | 10 | 7 | 8 | 4 | 9 | 6 | 1 | 5 | 3 | 2 | |
Ave | 1.054 × 10+03 | 7.976 × 10+02 | 7.725 × 10+02 | 7.418 × 10+02 | 8.075 × 10+02 | 7.781 × 10+02 | 7.567 × 10+02 | 7.799 × 10+02 | 7.695 × 10+02 | 7.483 × 10+02 | |
F7 | Std | 8.983 × 10+01 | 1.655 × 10+01 | 1.983 × 10+01 | 1.091 × 10+01 | 1.465 × 10+01 | 2.622 × 10+01 | 1.477 × 10+01 | 2.633 × 10+01 | 2.534 × 10+01 | 9.849 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.317 × 10−06 (+) | 1.123 × 10−02 (+) | 2.371 × 10−10 (+) | 9.533 × 10−07 (+) | 1.628 × 10−02 (+) | 9.533 × 10−07 (+) | 4.982 × 10−04 (+) | ||
Rank | 10 | 4 | 5 | 1 | 7 | 8 | 3 | 9 | 5 | 1 | |
Ave | 8.579 × 10+02 | 8.308 × 10+02 | 8.262 × 10+02 | 8.241 × 10+02 | 8.370 × 10+02 | 8.294 × 10+02 | 8.287 × 10+02 | 8.291 × 10+02 | 8.322 × 10+02 | 8.270 × 10+02 | |
F8 | Std | 1.758 × 10+01 | 6.450 × 10+00 | 5.895 × 10+00 | 9.253 × 10+00 | 4.739 × 10+00 | 1.337 × 10+01 | 8.479 × 10+00 | 7.375 × 10+00 | 1.048 × 10+01 | 9.227 × 10+00 |
P | 8.088 × 10−10 (+) | 5.745 × 10−02 (-) | 8.650 × 10−01 (-) | 2.611 × 10−01 (-) | 7.214 × 10−06 (+) | 7.171 × 10−01 (-) | 4.118 × 10−01 (-) | 3.218 × 10−01 (-) | 5.183 × 10−02 (-) | ||
Rank | 10 | 5 | 1 | 2 | 5 | 8 | 5 | 3 | 9 | 3 | |
Ave | 2.313 × 10+03 | 1.362 × 10+03 | 1.043 × 10+03 | 9.306 × 10+02 | 1.579 × 10+03 | 1.129 × 10+03 | 9.552 × 10+02 | 1.170 × 10+03 | 1.083 × 10+03 | 9.151 × 10+02 | |
F9 | Std | 3.390 × 10+02 | 1.953 × 10+02 | 1.210 × 10+02 | 5.436 × 10+02 | 1.860 × 10+02 | 2.470 × 10+02 | 7.967 × 10+01 | 3.455 × 10+02 | 2.456 × 10+02 | 1.756 × 10+01 |
P | 3.020 × 10−11 (+) | 3.685 × 10−11 (+) | 3.349 × 10−08 (+) | 1.624 × 10−01 (-) | 3.020 × 10−11 (+) | 4.107 × 10−07 (+) | 6.662 × 10−03 (+) | 1.721 × 10−03 (+) | 1.783 × 10−04 (+) | ||
Rank | 10 | 6 | 3 | 5 | 6 | 6 | 2 | 9 | 4 | 1 | |
Ave | 1.963 × 10+03 | 2.028 × 10+03 | 1.745 × 10+03 | 1.862 × 10+03 | 2.217 × 10+03 | 1.820 × 10+03 | 1.611 × 10+03 | 1.759 × 10+03 | 1.789 × 10+03 | 1.391 × 10+03 | |
F10 | Std | 1.899 × 10+02 | 2.643 × 10+02 | 2.396 × 10+02 | 2.328 × 10+02 | 1.471 × 10+02 | 3.136 × 10+02 | 2.890 × 10+02 | 2.413 × 10+02 | 2.654 × 10+02 | 1.136 × 10+02 |
P | 1.329 × 10−10 (+) | 3.020 × 10−11 (+) | 3.965 × 10−08 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 5.462 × 10−09 (+) | 2.000 × 10−05 (+) | 1.857 × 10−09 (+) | 1.202 × 10−08 (+) | ||
Rank | 4 | 9 | 2 | 4 | 7 | 9 | 4 | 3 | 8 | 1 | |
Ave | 2.462 × 10+03 | 1.134 × 10+03 | 1.140 × 10+03 | 1.164 × 10+03 | 1.377 × 10+03 | 1.167 × 10+03 | 1.117 × 10+03 | 1.149 × 10+03 | 1.168 × 10+03 | 1.117 × 10+03 | |
F11 | Std | 1.514 × 10+03 | 1.971 × 10+01 | 2.251 × 10+01 | 4.956 × 10+01 | 2.628 × 10+02 | 7.742 × 10+01 | 9.871 × 10+00 | 3.865 × 10+01 | 5.147 × 10+01 | 4.717 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 9.533 × 10−07 (+) | 2.678 × 10−06 (+) | 3.020 × 10−11 (+) | 1.249 × 10−05 (+) | 1.715 × 10−01 (-) | 7.043 × 10−07 (+) | 2.879 × 10−06 (+) | ||
Rank | 10 | 3 | 4 | 6 | 9 | 7 | 2 | 5 | 8 | 1 | |
Ave | 9.665 × 10+07 | 3.920 × 10+05 | 3.595 × 10+04 | 5.235 × 10+05 | 5.592 × 10+06 | 1.292 × 10+04 | 1.039 × 10+04 | 1.188 × 10+04 | 1.469 × 10+04 | 1.890 × 10+03 | |
F12 | Std | 1.470 × 10+07 | 4.173 × 10+05 | 7.709 × 10+04 | 1.694 × 10+06 | 5.537 × 10+06 | 1.262 × 10+04 | 8.329 × 10+03 | 1.492 × 10+04 | 1.662 × 10+04 | 2.269 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.602 × 10−08 (+) | 1.613 × 10−10 (+) | 9.919 × 10−11 (+) | 2.922 × 10−09 (+) | ||
Rank | 10 | 7 | 6 | 8 | 9 | 3 | 2 | 3 | 5 | 1 | |
Ave | 4.372 × 10+03 | 1.269 × 10+04 | 1.815 × 10+03 | 7.489 × 10+03 | 1.256 × 10+04 | 4.667 × 10+03 | 1.124 × 10+04 | 4.492 × 10+03 | 3.305 × 10+03 | 1.692 × 10+03 | |
F13 | Std | 2.892 × 10+03 | 1.012 × 10+04 | 2.202 × 10+02 | 8.498 × 10+03 | 8.694 × 10+03 | 3.400 × 10+03 | 6.373 × 10+03 | 3.710 × 10+03 | 1.939 × 10+03 | 2.986 × 10+02 |
P | 1.070 × 10−09 (+) | 3.690 × 10−11 (+) | 4.358 × 10−02 (+) | 1.429 × 10−08 (+) | 3.020 × 10−11 (+) | 5.264 × 10−04 (+) | 1.329 × 10−10 (+) | 7.220 × 10−06 (+) | 1.249 × 10−05 (+) | ||
Rank | 4 | 10 | 1 | 7 | 9 | 5 | 7 | 5 | 3 | 1 | |
Ave | 1.577 × 10+03 | 8.963 × 10+03 | 1.451 × 10+03 | 1.478 × 10+03 | 1.711 × 10+03 | 1.463 × 10+03 | 1.504 × 10+03 | 1.478 × 10+03 | 1.469 × 10+03 | 1.487 × 10+03 | |
F14 | Std | 1.084 × 10+02 | 8.528 × 10+03 | 2.004 × 10+01 | 4.154 × 10+01 | 9.514 × 10+01 | 2.984 × 10+01 | 1.538 × 10+02 | 3.506 × 10+02 | 3.604 × 10+01 | 3.76 × 10+02 |
P | 5.462 × 10−06 (+) | 3.965 × 10−08 (+) | 2.254 × 10−04 (+) | 2.707 × 10−01 (-) | 9.756 × 10−10 (+) | 1.911 × 10−02 (+) | 6.353 × 10−02 (-) | 3.183 × 10−01 (-) | 5.943 × 10−02 (-) | ||
Rank | 7 | 10 | 3 | 5 | 7 | 1 | 3 | 6 | 2 | 9 | |
Ave | 4.557 × 10+03 | 7.066 × 10+03 | 1.581 × 10+03 | 1.634 × 10+03 | 1.157 × 10+04 | 1.583 × 10+03 | 1.529 × 10+03 | 1.566 × 10+03 | 1.561 × 10+03 | 1.510 × 10+03 | |
F15 | Std | 3.009 × 10+03 | 6.053 × 10+03 | 4.028 × 10+01 | 8.260 × 10+01 | 1.824 × 10+03 | 8.033 × 10+01 | 3.605 × 10+01 | 4.903 × 10+01 | 5.095 × 10+01 | 1.330 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.206 × 10−10 (+) | 2.034 × 10−09 (+) | 3.020 × 10−11 (+) | 2.389 × 10−04 (+) | 5.554 × 10−02 (-) | 4.205 × 10−06 (+) | 2.600 × 10−05 (+) | ||
Rank | 8 | 10 | 3 | 7 | 9 | 4 | 2 | 5 | 5 | 1 | |
Ave | 2.050 × 10+03 | 1.999 × 10+03 | 1.775 × 10+03 | 1.718 × 10+03 | 2.070 × 10+03 | 1.743 × 10+03 | 1.741 × 10+03 | 1.763 × 10+03 | 1.772 × 10+03 | 1.614 × 10+03 | |
F16 | Std | 1.492 × 10+02 | 1.610 × 10+02 | 1.216 × 10+02 | 1.023 × 10+02 | 1.572 × 10+02 | 1.477 × 10+02 | 1.398 × 10+02 | 1.155 × 10+02 | 1.624 × 10+02 | 1.164 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.256 × 10−07 (+) | 1.529 × 10−05 (+) | 3.020 × 10−11 (+) | 8.841 × 10−07 (+) | 1.911 × 10−02 (+) | 6.528 × 10−08 (+) | 2.783 × 10−07 (+) | ||
Rank | 7 | 9 | 6 | 2 | 10 | 5 | 4 | 3 | 8 | 1 | |
Ave | 1.867 × 10+03 | 1.846 × 10+03 | 1.755 × 10+02 | 1.751 × 10+03 | 1.784 × 10+03 | 1.774 × 10+03 | 1.766 × 10+03 | 1.769 × 10+03 | 1.786 × 10+03 | 1.733 × 10+03 | |
F17 | Std | 6.346 × 10+01 | 8.886 × 10+01 | 1.095 × 10+01 | 1.566 × 10+01 | 2.775 × 10+01 | 4.958 × 10+01 | 5.303 × 10+01 | 4.213 × 10+01 | 5.320 × 10+01 | 1.164 × 10+01 |
P | 3.020 × 10−11 (+) | 4.504 × 10−11 (+) | 2.227 × 10−09 (+) | 3.835 × 10−06 (+) | 3.020 × 10−11 (+) | 2.597 × 10−05 (+) | 4.290 × 10−01 (-) | 1.041 × 10−04 (+) | 1.635 × 10−05 (+) | ||
Rank | 8 | 8 | 2 | 3 | 5 | 5 | 7 | 4 | 8 | 1 | |
Ave | 9.961 × 10+04 | 1.426 × 10+04 | 2.018 × 10+03 | 1.667 × 10+04 | 1.602 × 10+04 | 1.962 × 10+03 | 5.585 × 10+03 | 1.939 × 10+03 | 2.014 × 10+03 | 1.837 × 10+03 | |
F18 | Std | 4.276 × 10+05 | 9.316 × 10+03 | 1.754 × 10+02 | 1.392 × 10+04 | 1.111 × 10+04 | 4.027 × 10+02 | 3.291 × 10+03 | 2.447 × 10+02 | 5.577 × 10+02 | 8.920 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.777 × 10−10 (+) | 2.872 × 10−10 (+) | 3.020 × 10−11 (+) | 3.006 × 10−04 (+) | 1.777 × 10−10 (+) | 1.123 × 10−02 (+) | 9.533 × 10−07 (+) | ||
Rank | 10 | 7 | 3 | 9 | 8 | 4 | 6 | 2 | 5 | 1 | |
Ave | 2.903 × 10+04 | 1.524 × 10+04 | 1.938 × 10+03 | 1.984 × 10+03 | 1.143 × 10+05 | 1.950 × 10+03 | 2.040 × 10+03 | 1.937 × 10+03 | 1.957 × 10+03 | 1.918 × 10+03 | |
F19 | Std | 6.639 × 10+04 | 1.426 × 10+04 | 2.847 × 10+01 | 1.350 × 10+02 | 3.848 × 10+05 | 5.288 × 10+01 | 3.907 × 10+02 | 4.078 × 10+01 | 5.410 × 10+02 | 1.354 × 10+01 |
P | 3.020 × 10−11 (+) | 4.975 × 10−11 (+) | 6.203 × 10−04 (+) | 5.265 × 10−05 (+) | 3.020 × 10−11 (+) | 4.841 × 10−02 (+) | 8.500 × 10−02 (-) | 1.118 × 10−01 (-) | 5.828 × 10−03 (+) | ||
Rank | 9 | 8 | 2 | 5 | 10 | 4 | 7 | 3 | 6 | 1 | |
Ave | 2.182 × 10+03 | 2.119 × 10+03 | 2.095 × 10+03 | 2.069 × 10+03 | 2.214 × 10+03 | 2.094 × 10+03 | 2.034 × 10+03 | 2.089 × 10+03 | 2.066 × 10+03 | 2.034 × 10+03 | |
F20 | Std | 7.508 × 10+01 | 5.110 × 10+01 | 5.542 × 10+01 | 4.596 × 10+01 | 5.579 × 10+01 | 7.565 × 10+01 | 3.024 × 10+01 | 5.461 × 10+01 | 5.381 × 10+02 | 1.312 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 5.600 × 10−07 (+) | 1.836 × 10−04 (+) | 3.020 × 10−11 (+) | 2.531 × 10−04 (+) | 2.772 × 10−01 (-) | 9.514 × 10−06 (+) | 6.353 × 10−02 (-) | ||
Rank | 9 | 5 | 5 | 3 | 9 | 8 | 2 | 4 | 7 | 1 | |
Ave | 2.322 × 10+03 | 2.311 × 10+03 | 2.276 × 10+03 | 2.203 × 10+03 | 2.322 × 10+03 | 2.322 × 10+03 | 2.338 × 10+03 | 2.318 × 10+03 | 2.331 × 10+03 | 2.203 × 10+03 | |
F21 | Std | 4.807 × 10+01 | 5.110 × 10+01 | 7.171 × 10+01 | 1.469 × 10+00 | 6.534 × 10+01 | 4.925 × 10+01 | 4.172 × 10+01 | 4.825 × 10+01 | 4.742 × 10+01 | 1.503 × 10+00 |
P | 1.614 × 10−11 (+) | 8.168 × 10−11 (+) | 7.865 × 10−07 (+) | 7.927 × 10−06 (+) | 1.614 × 10−11 (+) | 2.989 × 10−08 (+) | 3.215 × 10−10 (+) | 5.277 × 10−09 (+) | 2.113 × 10−09 (+) | ||
Rank | 3 | 4 | 6 | 1 | 8 | 9 | 7 | 5 | 10 | 2 | |
Ave | 3.025 × 10+03 | 2.504 × 10+03 | 2.318 × 10+03 | 2.307 × 10+03 | 2.393 × 10+03 | 2.359 × 10+03 | 2.320 × 10+03 | 2.326 × 10+03 | 2.378 × 10+03 | 2.302 × 10+03 | |
F22 | Std | 2.672 × 10+02 | 9.834 × 10+01 | 2.629 × 10+01 | 1.410 × 10+01 | 1.162 × 10+02 | 2.293 × 10+02 | 1.436 × 10+02 | 1.449 × 10+02 | 2.815 × 10+02 | 7.056 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.879 × 10−06 (+) | 2.879 × 10−06 (+) | 4.856 × 10−03 (+) | 2.707 × 10−01 (-) | 1.695 × 10−02 (+) | 5.395 × 10−01 (-) | 2.838 × 10−01 (-) | ||
Rank | 10 | 5 | 3 | 2 | 5 | 5 | 4 | 8 | 9 | 1 | |
Ave | 2.752 × 10+03 | 2.712 × 10+03 | 2.652 × 10+03 | 2.631 × 10+03 | 2.725 × 10+03 | 2.636 × 10+03 | 2.636 × 10+03 | 2.636 × 10+03 | 2.636 × 10+03 | 2.636 × 10+03 | |
F23 | Std | 5.492 × 10+01 | 4.199 × 10+01 | 1.686 × 10+01 | 1.416 × 10+01 | 4.487 × 10+01 | 2.503 × 10+01 | 1.180 × 10+01 | 1.322 × 10+01 | 1.118 × 10+01 | 1.034 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 9.063 × 10−08 (+) | 3.183 × 10−01 (-) | 3.020 × 10−11 (+) | 1.023 × 10−01 (-) | 9.626 × 10−02 (-) | 7.483 × 10−02 (-) | 3.644 × 10−02 (+) | ||
Rank | 10 | 8 | 7 | 5 | 9 | 6 | 3 | 4 | 2 | 1 | |
Ave | 2.865 × 10+03 | 2.831 × 10+03 | 2.673 × 10+03 | 2.568 × 10+03 | 2.800 × 10+03 | 2.737 × 10+03 | 2.706 × 10+03 | 2.749 × 10+03 | 2.765 × 10+03 | 2.682 × 10+03 | |
F24 | Std | 8.868 × 10+01 | 7.021 × 10+01 | 1.346 × 10+02 | 1.121 × 10+02 | 9.218 × 10+01 | 9.714 × 10+01 | 1.279 × 10+02 | 6.908 × 10+01 | 1.388 × 10+01 | 1.018 × 10+02 |
P | 6.473 × 10−08 (+) | 6.456 × 10−09 (+) | 6.138 × 10−09 (-) | 1.277 × 10−02 (+) | 1.058 × 10−07 (+) | 5.362 × 10−07 (+) | 1.673 × 10−03 (+) | 1.985 × 10−07 (+) | 2.345 × 10−10 (+) | ||
Rank | 10 | 6 | 6 | 3 | 8 | 5 | 8 | 1 | 1 | 4 | |
Ave | 3.512 × 10+03 | 2.956 × 10+03 | 2.939 × 10+03 | 2.931 × 10+03 | 3.000 × 10+03 | 2.938 × 10+03 | 2.930 × 10+03 | 2.937 × 10+03 | 2.932 × 10+03 | 2.889 × 10+03 | |
F25 | Std | 3.157 × 10+02 | 3.734 × 10+01 | 3.958 × 10+01 | 2.835 × 10+01 | 5.196 × 10+01 | 3.378 × 10+01 | 6.436 × 10+01 | 3.216 × 10+01 | 3.061 × 10+01 | 5.460 × 10+01 |
P | 2.111 × 10−11 (+) | 1.007 × 10−08 (+) | 7.032 × 10−06 (+) | 4.588 × 10−05 (+) | 2.111 × 10−11 (+) | 3.020 × 10−07 (+) | 5.534 × 10−08 (+) | 9.950 × 10−06 (+) | 7.353 × 10−05 (+) | ||
Rank | 10 | 7 | 5 | 1 | 9 | 3 | 7 | 5 | 2 | 4 | |
Ave | 3.963 × 10+03 | 3.611 × 10+03 | 3.034 × 10+03 | 3.016 × 10+03 | 3.626 × 10+03 | 2.954 × 10+03 | 3.149 × 10+03 | 3.177 × 10+03 | 3.242 × 10+03 | 2.870 × 10+03 | |
F26 | Std | 3.770 × 10+02 | 4.218 × 10+02 | 1.159 × 10+02 | 1.559 × 10+02 | 4.754 × 10+02 | 1.872 × 10+02 | 5.512 × 10+02 | 3.779 × 10+02 | 4.735 × 10+02 | 7.601 × 10+01 |
P | 2.272 × 10−11 (+) | 1.222 × 10−09 (+) | 6.377 × 10−08 (+) | 2.674 × 10−06 (+) | 4.604 × 10−11 (+) | 7.405 × 10−04 (+) | 7.976 × 10−01 (-) | 4.217 × 10−08 (+) | 4.095 × 10−07 (+) | ||
Rank | 6 | 6 | 2 | 2 | 10 | 2 | 6 | 5 | 6 | 1 | |
Ave | 3.229 × 10+03 | 3.202 × 10+03 | 3.102 × 10+03 | 3.099 × 10+03 | 3.206 × 10+03 | 3.110 × 10+03 | 3.128 × 10+03 | 3.114 × 10+03 | 3.107 × 10+03 | 3.096 × 10+03 | |
F27 | Std | 5.073 × 10+01 | 5.584 × 10+01 | 1.755 × 10+01 | 5.788 × 10+00 | 6.027 × 10+01 | 2.778 × 10+01 | 4.131 × 10+01 | 3.055 × 10+01 | 2.060 × 10+01 | 3.026 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 8.771 × 10−02 (-) | 6.145 × 10−02 (-) | 3.020 × 10−11 (+) | 5.083 × 10−03 (+) | 1.557 × 10−08 (+) | 6.668 × 10−03 (+) | 4.225 × 10−03 (+) | ||
Rank | 9 | 8 | 3 | 2 | 10 | 5 | 7 | 6 | 4 | 1 | |
Ave | 3.682 × 10+03 | 3.414 × 10+03 | 3.273 × 10+03 | 3.230 × 10+03 | 3.592 × 10+03 | 3.411 × 10+03 | 3.406 × 10+03 | 3.349 × 10+03 | 3.353 × 10+03 | 3.111 × 10+03 | |
F28 | Std | 2.112 × 10+02 | 1.681 × 10+02 | 1.181 × 10+02 | 1.075 × 10+02 | 1.850 × 10+02 | 1.458 × 10+02 | 7.748 × 10+01 | 1.706 × 10+02 | 1.555 × 10+02 | 3.102 × 10+01 |
P | 4.111 × 10−11 (+) | 2.285 × 10−11 (+) | 9.763 × 10−11 (+) | 4.795 × 10−10 (+) | 1.087 × 10−11 (+) | 3.265 × 10−10 (+) | 2.204 × 10−10 (+) | 2.406 × 10−08 (+) | 1.627 × 10−09 (+) | ||
Rank | 10 | 8 | 3 | 2 | 9 | 6 | 4 | 7 | 5 | 1 | |
Ave | 3.392 × 10+03 | 3.357 × 10+03 | 3.226 × 10+03 | 3.198 × 10+03 | 3.427 × 10+03 | 3.255 × 10+03 | 3.241 × 10+03 | 3.255 × 10+03 | 3.247 × 10+03 | 3.234 × 10+03 | |
F29 | Std | 1.005 × 10+03 | 1.161 × 10+02 | 4.906 × 10+01 | 5.224 × 10+01 | 1.015 × 10+02 | 8.115 × 10+01 | 4.135 × 10+01 | 8.225 × 10+01 | 6.937 × 10+01 | 4.070 × 10+01 |
P | 2.227 × 10−09 (+) | 2.317 × 10−06 (+) | 4.825 × 10−01 (-) | 1.953 × 10−03 (+) | 6.121 × 10−10 (+) | 8.187 × 10−01 (-) | 6.414 × 10−01 (-) | 5.011 × 10−01 (-) | 7.062 × 10−01 (-) | ||
Rank | 8 | 9 | 2 | 6 | 10 | 5 | 3 | 7 | 4 | 1 | |
Ave | 7.039 × 10+06 | 1.175 × 10+06 | 3.530 × 10+04 | 7.568 × 10+05 | 6.073 × 10+06 | 1.557 × 10+05 | 5.953 × 10+03 | 3.718 × 10+05 | 3.969 × 10+05 | 3.828 × 10+03 | |
F30 | Std | 8.628 × 10+06 | 1.781 × 10+06 | 1.484 × 10+05 | 1.040 × 10+06 | 6.524 × 10+06 | 3.491 × 10+05 | 1.484 × 10+03 | 8.156 × 10+05 | 7.572 × 10+05 | 1.405 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 8.485 × 10−09 (+) | 3.000 × 10−11 (+) | 3.020 × 10−11 (+) | 8.290 × 10−06 (+) | 3.020 × 10−11 (+) | 8.273 × 10−06 (+) | 3.502 × 10−07 (+) | ||
Rank | 10 | 8 | 3 | 7 | 9 | 4 | 2 | 6 | 5 | 1 | |
Average Rank | 8.66 | 7.03 | 4.28 | 4.21 | 8.28 | 5.10 | 4.17 | 4.83 | 5.17 | 1.72 | |
+/NaN/- | 29/0/0 | 28/0/1 | 25/0/4 | 23/1/5 | 29/0/0 | 23/1/5 | 18/1/10 | 21/1/7 | 21/1/7 |
F | Index | BAS | AOA | POA | DBO | LMHHO | TSSA | QMESSA | LSSA | SSA | IBSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
Ave | 1.054 × 10+10 | 4.203 × 10+10 | 1.445 × 10+10 | 8.911 × 10+04 | 1.663 × 10+10 | 4.049 × 10+03 | 3.663 × 10+03 | 8.025 × 10+03 | 7.593 × 10+03 | 1.430 × 10+03 | |
F1 | Std | 1.711 × 10+10 | 6.379 × 10+09 | 7.650 × 10+09 | 1.699 × 10+05 | 3.093 × 10+09 | 4.822 × 10+03 | 4.316 × 10+03 | 7.208 × 10+03 | 6.329 × 10+03 | 1.165 × 10+03 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.197 × 10−09 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 6.577 × 10−02 (-) | 2.678 × 10−06 (+) | 1.606 × 10−06 (+) | ||
Rank | 10 | 9 | 8 | 6 | 7 | 3 | 2 | 5 | 4 | 1 | |
Ave | 1.746 × 10+05 | 7.464 × 10+04 | 2.232 × 10+04 | 3.996 × 10+03 | 7.261 × 10+04 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | |
F3 | Std | 3.372 × 10+04 | 7.427 × 10+03 | 8.161 × 10+03 | 5.394 × 10+03 | 5.292 × 10+03 | 5.078 × 10−10 | 1.194 × 10−01 | 6.540 × 10−03 | 1.077 × 10−10 | 9.570 × 10−11 |
P | 2.686 × 10−11 (+) | 2.686 × 10−11 (+) | 2.686 × 10−11 (+) | 2.686 × 10−11 (+) | 2.686 × 10−11 (+) | 2.686 × 10−11 (+) | 2.686 × 10−11 (+) | 2.686 × 10−11 (+) | 8.743 × 10−02 (-) | ||
Rank | 10 | 8 | 8 | 6 | 7 | 3 | 5 | 4 | 2 | 1 | |
Ave | 3.795 × 10+04 | 8.853 × 10+03 | 1.674 × 10+03 | 5.124 × 10+02 | 4.056 × 10+03 | 4.215 × 10+02 | 4.632 × 10+02 | 4.487 × 10+02 | 4.319 × 10+02 | 4.030 × 10+02 | |
F4 | Std | 9.718 × 10+03 | 1.941 × 10+03 | 1.363 × 10+03 | 4.529 × 10+01 | 1.077 × 10+03 | 2.980 × 10+01 | 3.214 × 10+01 | 3.068 × 10+01 | 3.780 × 10+01 | 5.951 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 4.504 × 10−11 (+) | 3.020 × 10−11 (+) | 2.145 × 10−02 (+) | 5.092 × 10−08 (+) | 4.113 × 10−07 (+) | 5.825 × 10−03 (+) | ||
Rank | 10 | 9 | 7 | 6 | 7 | 2 | 5 | 3 | 4 | 1 | |
Ave | 9.995 × 10+02 | 8.211 × 10+02 | 7.460 × 10+02 | 7.269 × 10+02 | 8.337 × 10+02 | 7.585 × 10+02 | 6.681 × 10+02 | 7.085 × 10+02 | 7.538 × 10+02 | 6.538 × 10+02 | |
F5 | Std | 6.726 × 10+01 | 3.637 × 10+01 | 4.154 × 10+01 | 4.907 × 10+01 | 2.602 × 10+01 | 4.545 × 10+01 | 3.046 × 10+01 | 6.021 × 10+01 | 3.975 × 10+01 | 2.231 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 9.919 × 10−11 (+) | 1.202 × 10−08 (+) | 3.020 × 10−11 (+) | 8.101 × 10−10 (+) | 2.509 × 10−02 (+) | 1.302 × 10−03 (+) | 1.464 × 10−10 (+) | ||
Rank | 10 | 6 | 3 | 6 | 3 | 9 | 2 | 6 | 3 | 1 | |
Ave | 6.922 × 10+02 | 6.680 × 10+02 | 6.565 × 10+02 | 6.390 × 10+02 | 6.840 × 10+02 | 6.456 × 10+02 | 6.184 × 10+02 | 6.366 × 10+02 | 6.459 × 10+02 | 6.411 × 10+02 | |
F6 | Std | 7.287 × 10+00 | 6.466 × 10+00 | 7.114 × 10+00 | 1.280 × 10+01 | 4.472 × 10+00 | 9.649 × 10+00 | 7.343 × 10+00 | 1.230 × 10+01 | 1.123 × 10+01 | 5.955 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.197 × 10−09 (+) | 6.100 × 10−01 (-) | 3.020 × 10−11 (+) | 3.917 × 10−02 (+) | 1.329 × 10−10 (+) | 1.907 × 10−01 (-) | 8.236 × 10−02 (-) | ||
Rank | 10 | 5 | 5 | 1 | 4 | 8 | 3 | 5 | 9 | 2 | |
Ave | 3.281 × 10+03 | 1.294 × 10+03 | 1.243 × 10+03 | 9.651 × 10+02 | 1.332 × 10+03 | 1.210 × 10+03 | 9.382 × 10+02 | 1.093 × 10+03 | 1.219 × 10+03 | 9.910 × 10+02 | |
F7 | Std | 3.037 × 10+02 | 5.677 × 10+01 | 7.725 × 10+01 | 7.591 × 10+01 | 3.422 × 10+01 | 9.011 × 10+01 | 4.560 × 10+01 | 1.328 × 10+02 | 1.014 × 10+02 | 4.047 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 4.077 × 10−11 (+) | 9.883 × 10−03 (+) | 3.020 × 10−11 (+) | 3.690 × 10−11 (+) | 3.831 × 10−05 (+) | 8.120 × 10−04 (+) | 9.756 × 10−10 (+) | ||
Rank | 10 | 5 | 7 | 3 | 4 | 6 | 1 | 7 | 9 | 2 | |
Ave | 1.212 × 10+03 | 1.040 × 10+03 | 9.897 × 10+02 | 9.925 × 10+02 | 1.039 × 10+03 | 9.813 × 10+02 | 9.382 × 10+02 | 9.634 × 10+02 | 9.772 × 10+02 | 9.342 × 10+02 | |
F8 | Std | 5.524 × 10+01 | 3.407 × 10+01 | 2.083 × 10+01 | 5.056 × 10+01 | 2.875 × 10+01 | 2.537 × 10+01 | 2.410 × 10+01 | 3.075 × 10+01 | 3.272 × 10+01 | 1.432 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 4.077 × 10−11 (+) | 1.492 × 10−06 (+) | 3.020 × 10−11 (+) | 1.695 × 10−09 (+) | 5.793 × 10−01 (-) | 1.407 × 10−04 (+) | 1.586 × 10−07 (+) | ||
Rank | 10 | 9 | 3 | 8 | 7 | 4 | 2 | 4 | 6 | 1 | |
Ave | 1.429 × 10+04 | 5.819 × 10+03 | 5.208 × 10+03 | 4.290 × 10+03 | 6.705 × 10+03 | 5.416 × 10+03 | 4.402 × 10+03 | 5.027 × 10+03 | 5.259 × 10+03 | 4.364 × 10+03 | |
F9 | Std | 2.219 × 10+03 | 6.012 × 10+02 | 6.242 × 10+02 | 1.530 × 10+03 | 8.250 × 10+02 | 4.257 × 10+02 | 6.461 × 10+02 | 7.133 × 10+02 | 4.481 × 10+02 | 4.592 × 10+02 |
P | 3.020 × 10−11 (+) | 9.919 × 10−11 (+) | 5.186 × 10−107 (+) | 4.035 × 10−01 (-) | 3.020 × 10−11 (+) | 3.352 × 10−08 (+) | 6.309 × 10−01 (-) | 8.292 × 10−06 (+) | 5.462 × 10−09 (+) | ||
Rank | 10 | 8 | 6 | 5 | 9 | 2 | 3 | 6 | 3 | 1 | |
Ave | 6.942 × 10+03 | 6.408 × 10+03 | 4.665 × 10+03 | 5.784 × 10+03 | 6.467 × 10+03 | 5.084 × 10+03 | 4.510 × 10+03 | 4.822 × 10+03 | 5.314 × 10+03 | 4.587 × 10+03 | |
F10 | Std | 3.642 × 10+02 | 5.438 × 10+02 | 6.272 × 10+02 | 6.317 × 10+02 | 8.287 × 10+02 | 5.752 × 10+02 | 5.062 × 10+02 | 4.971 × 10+02 | 5.751 × 10+02 | 2.860 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.858 × 10−01 (-) | 5.462 × 10−09 (+) | 3.020 × 10−11 (+) | 7.295 × 10−04 (+) | 1.858 × 10−01 (-) | 3.265 × 10−02 (+) | 4.444 × 10−07 (+) | ||
Rank | 6 | 8 | 4 | 9 | 10 | 5 | 2 | 3 | 7 | 1 | |
Ave | 2.118 × 10+04 | 3.253 × 10+03 | 1.962 × 10+03 | 1.387 × 10+03 | 5.912 × 10+03 | 1.347 × 10+03 | 1.175 × 10+03 | 1.388 × 10+03 | 1.339 × 10+03 | 1.214 × 10+03 | |
F11 | Std | 6.657 × 10+03 | 1.012 × 10+03 | 5.963 × 10+02 | 9.220 × 10+01 | 1.095 × 10+03 | 7.516 × 10+01 | 3.279 × 10+01 | 1.038 × 10+02 | 8.403 × 10+01 | 2.198 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.094 × 10−10 (+) | 3.020 × 10−11 (+) | 1.329 × 10−10 (+) | 1.635 × 10−05 (+) | 4.616 × 10−10 (+) | 4.686 × 10−08 (+) | ||
Rank | 10 | 8 | 7 | 5 | 9 | 3 | 1 | 6 | 3 | 1 | |
Ave | 2.346 × 10+10 | 8.478 × 10+09 | 1.005 × 10+09 | 1.009 × 10+07 | 2.116 × 10+09 | 4.142 × 10+04 | 7.457 × 10+04 | 5.457 × 10+04 | 3.696 × 10+04 | 7.438 × 10+03 | |
F12 | Std | 5.060 × 10+09 | 2.678 × 10+09 | 1.242 × 10+09 | 9.400 × 10+06 | 9.801 × 10+09 | 1.551 × 10+04 | 4.632 × 10+04 | 3.268 × 10+04 | 2.045 × 10+04 | 1.258 × 10+03 |
P | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | 2.954 × 10−11 (+) | ||
Rank | 10 | 9 | 7 | 6 | 7 | 2 | 5 | 4 | 2 | 1 | |
Ave | 2.073 × 10+10 | 1.111 × 10+07 | 1.775 × 10+07 | 9.887 × 10+05 | 6.737 × 10+08 | 1.679 × 10+05 | 8.749 × 10+03 | 3.032 × 10+06 | 2.426 × 10+04 | 2.541 × 10+03 | |
F13 | Std | 9.381 × 10+09 | 6.070 × 10+07 | 5.517 × 10+07 | 1.143 × 10+06 | 7.428 × 10+08 | 8.086 × 10+05 | 9.495 × 10+03 | 1.306 × 10+07 | 2.415 × 10+04 | 4.481 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 5.084 × 10−03 (+) | 3.020 × 10−11 (+) | 1.777 × 10−10 (+) | ||
Rank | 10 | 7 | 7 | 5 | 9 | 4 | 2 | 6 | 3 | 1 | |
Ave | 7.392 × 10+06 | 5.071 × 10+04 | 7.762 × 10+03 | 7.394 × 10+04 | 2.762 × 10+06 | 5.069 × 10+03 | 1.275 × 10+04 | 7.290 × 10+03 | 6.273 × 10+03 | 4.777 × 10+03 | |
F14 | Std | 9.063 × 10+06 | 4.577 × 10+04 | 1.337 × 10+04 | 1.206 × 10+05 | 2.619 × 10+06 | 2.833 × 10+03 | 1.020 × 10+04 | 4.144 × 10+03 | 2.987 × 10+03 | 2.147 × 10+03 |
P | 3.020 × 10−11 (+) | 1.174 × 10−09 (+) | 9.000 × 10−01 (-) | 8.485 × 10−09 (+) | 3.020 × 10−11 (+) | 7.483 × 10−02 (-) | 8.883 × 10−06 (+) | 1.729 × 10−07 (+) | 2.597 × 10−05 (+) | ||
Rank | 10 | 7 | 5 | 8 | 9 | 2 | 5 | 4 | 3 | 1 | |
Ave | 2.332 × 10+09 | 2.155 × 10+04 | 3.958 × 10+04 | 9.637 × 10+04 | 1.908 × 10+06 | 9.625 × 10+03 | 2.468 × 10+03 | 1.405 × 10+04 | 1.230 × 10+04 | 2.343 × 10+03 | |
F15 | Std | 1.234 × 10+09 | 8.959 × 10+03 | 2.186 × 10+04 | 7.752 × 10+04 | 1.367 × 10+06 | 1.192 × 10+04 | 1.196 × 10+03 | 1.322 × 10+04 | 1.287 × 10+04 | 4.943 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.002 × 10−06 (+) | 1.580 × 10−01 (-) | 8.485 × 10−09 (+) | 3.805 × 10−07 (+) | ||
Rank | 10 | 4 | 7 | 8 | 9 | 3 | 2 | 6 | 4 | 1 | |
Ave | 6.838 × 10+03 | 4.026 × 10+03 | 2.926 × 10+03 | 2.972 × 10+03 | 4.909 × 10+03 | 3.022 × 10+03 | 2.897 × 10+03 | 2.937 × 10+03 | 2.896 × 10+03 | 2.821 × 10+03 | |
F16 | Std | 1.704 × 10+03 | 5.762 × 10+02 | 3.585 × 10+02 | 3.209 × 10+02 | 6.695 × 10+02 | 2.973 × 10+02 | 3.480 × 10+02 | 4.509 × 10+02 | 3.481 × 10+02 | 2.275 × 10+02 |
P | 3.020 × 10−11 (+) | 3.338 × 10−11 (+) | 2.973 × 10−01 (-) | 9.334 × 10−02 (-) | 3.020 × 10−11 (+) | 9.468 × 10−03 (+) | 6.520 × 10−01 (-) | 3.711 × 10−01 (-) | 2.340 × 10−01 (-) | ||
Rank | 10 | 8 | 6 | 4 | 9 | 4 | 2 | 7 | 3 | 1 | |
Ave | 7.391 × 10+03 | 2.903 × 10+03 | 2.206 × 10+03 | 2.437 × 10+03 | 2.946 × 10+03 | 2.577 × 10+03 | 2.290 × 10+03 | 2.517 × 10+03 | 2.522 × 10+03 | 2.051 × 10+03 | |
F17 | Std | 7.409 × 10+03 | 2.536 × 10+02 | 1.864 × 10+02 | 2.363 × 10+02 | 3.503 × 10+02 | 3.047 × 10+02 | 2.066 × 10+02 | 2.955 × 10+02 | 3.401 × 10+02 | 9.255 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 6.913 × 10−04 (+) | 4.998 × 10−09 (+) | 3.020 × 10−11 (+) | 4.616 × 10−10 (+) | 4.801 × 10−07 (+) | 4.573 × 10−09 (+) | 9.063 × 10−08 (+) | ||
Rank | 10 | 6 | 2 | 4 | 9 | 7 | 3 | 5 | 7 | 1 | |
Ave | 1.149 × 10+09 | 7.268 × 10+05 | 1.388 × 10+05 | 6.139 × 10+05 | 1.295 × 10+07 | 1.344 × 10+05 | 1.841 × 10+05 | 1.163 × 10+05 | 1.469 × 10+05 | 7.091 × 10+03 | |
F18 | Std | 1.108 × 10+08 | 7.900 × 10+05 | 1.272 × 10+05 | 5.872 × 10+06 | 1.167 × 10+07 | 1.094 × 10+05 | 1.833 × 10+05 | 8.492 × 10+04 | 1.047 × 10+05 | 1.754 × 10+03 |
P | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | 1.617 × 10−11 (+) | ||
Rank | 10 | 7 | 5 | 7 | 9 | 3 | 6 | 2 | 4 | 1 | |
Ave | 3.488 × 10+09 | 1.075 × 10+06 | 3.957 × 10+05 | 2.292 × 10+06 | 2.159 × 10+07 | 9.912 × 10+03 | 4.154 × 10+03 | 1.215 × 10+04 | 1.283 × 10+04 | 4.911 × 10+03 | |
F19 | Std | 2.413 × 10+09 | 1.335 × 10+05 | 4.501 × 10+05 | 3.158 × 10+06 | 4.846 × 10+07 | 1.061 × 10+04 | 1.898 × 10+03 | 1.598 × 10+04 | 1.625 × 10+04 | 2.114 × 10+03 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.334 × 10−11 (+) | 6.121 × 10−10 (+) | 3.020 × 10−11 (+) | 2.709 × 10−02 (+) | 1.023 × 10−01 (-) | 3.034 × 10−03 (+) | 1.413 × 10−01 (-) | ||
Rank | 10 | 7 | 8 | 6 | 9 | 3 | 1 | 4 | 5 | 2 | |
Ave | 2.782 × 10+03 | 2.748 × 10+03 | 2.478 × 10+03 | 2.485 × 10+03 | 2.935 × 10+03 | 2.674 × 10+03 | 2.543 × 10+03 | 2.643 × 10+03 | 2.792 × 10+03 | 2.308 × 10+03 | |
F20 | Std | 1.321 × 10+02 | 2.030 × 10+02 | 1.457 × 10+02 | 1.624 × 10+02 | 2.000 × 10+02 | 2.059 × 10+02 | 2.848 × 10+02 | 2.075 × 10+02 | 2.071 × 10+02 | 7.992 × 10+01 |
P | 3.020 × 10−11 (+) | 2.371 × 10−10 (+) | 2.154 × 10−06 (+) | 4.420 × 10−06 (+) | 3.020 × 10−11 (+) | 2.610 × 10−10 (+) | 1.370 × 10−03 (+) | 2.831 × 10−08 (+) | 1.329 × 10−10 (+) | ||
Rank | 4 | 5 | 2 | 3 | 9 | 5 | 7 | 8 | 10 | 1 | |
Ave | 2.765 × 10+03 | 2.621 × 10+03 | 2.517 × 10+03 | 2.523 × 10+03 | 2.667 × 10+03 | 2.517 × 10+03 | 2.477 × 10+03 | 2.496 × 10+03 | 2.547 × 10+03 | 2.461 × 10+03 | |
F21 | Std | 6.282 × 10+01 | 6.407 × 10+01 | 7.251 × 10+01 | 7.236 × 10+01 | 4.224 × 10+01 | 5.273 × 10+01 | 4.161 × 10+01 | 4.594 × 10+01 | 6.823 × 10+01 | 5.293 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.879 × 10−06 (+) | 1.473 × 10−07 (+) | 3.020 × 10−11 (+) | 4.943 × 10−05 (+) | 4.733 × 10−01 (-) | 9.468 × 10−03 (+) | 2.491 × 10−06 (+) | ||
Rank | 10 | 7 | 9 | 6 | 5 | 4 | 1 | 2 | 7 | 2 | |
Ave | 8.588 × 10+03 | 8.063 × 10+03 | 5.009 × 10+03 | 3.151 × 10+03 | 8.167 × 10+03 | 6.015 × 10+03 | 3.319 × 10+03 | 5.080 × 10+03 | 5.998 × 10+03 | 2.309 × 10+03 | |
F22 | Std | 4.916 × 10+02 | 8.513 × 10+02 | 1.485 × 10+03 | 1.252 × 10+03 | 9.987 × 10+02 | 1.938 × 10+03 | 1.761 × 10+03 | 2.075 × 10+03 | 1.981 × 10+03 | 4.708 × 10+01 |
P | 2.449 × 10−11 (+) | 2.449 × 10−11 (+) | 2.449 × 10−11 (+) | 8.581 × 10−08 (+) | 2.449 × 10−11 (+) | 1.446 × 10−07 (+) | 4.651 × 10−03 (+) | 5.604 × 10−04 (+) | 2.789 × 10−08 (+) | ||
Rank | 6 | 3 | 3 | 2 | 10 | 7 | 3 | 7 | 7 | 1 | |
Ave | 3.739 × 10+03 | 3.421 × 10+03 | 2.997 × 10+03 | 2.912 × 10+03 | 3.501 × 10+03 | 2.933 × 10+03 | 2.836 × 10+03 | 2.909 × 10+03 | 2.951 × 10+03 | 2.861 × 10+03 | |
F23 | Std | 2.000 × 10+02 | 1.595 × 10+02 | 6.796 × 10+01 | 8.061 × 10+01 | 1.688 × 10+02 | 8.411 × 10+01 | 4.675 × 10+01 | 6.837 × 10+01 | 8.183 × 10+01 | 3.099 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.094 × 10−10 (+) | 2.157 × 10−03 (+) | 3.006 × 10−04 (+) | 3.006 × 10−04 (+) | 1.765 × 10−02 (+) | 1.597 × 10−03 (+) | 1.385 × 10−06 (+) | ||
Rank | 10 | 8 | 5 | 4 | 9 | 6 | 1 | 3 | 6 | 1 | |
Ave | 4.105 × 10+03 | 3.807 × 10+03 | 3.157 × 10+03 | 3.067 × 10+03 | 3.766 × 10+03 | 3.108 × 10+03 | 3.044 × 10+03 | 3.036 × 10+03 | 3.081 × 10+03 | 2.971 × 10+03 | |
F24 | Std | 2.484 × 10+02 | 2.207 × 10+02 | 7.138 × 10+01 | 7.647 × 10+01 | 2.999 × 10+02 | 1.026 × 10+02 | 5.650 × 10+01 | 6.124 × 10+01 | 7.766 × 10+01 | 2.096 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.256 × 10−07 (+) | 3.020 × 10−11 (+) | 6.518 × 10−09 (+) | 1.873 × 10−07 (+) | 6.736 × 10−06 (+) | 5.462 × 10−09 (+) | ||
Rank | 9 | 8 | 6 | 4 | 9 | 7 | 2 | 2 | 5 | 1 | |
Ave | 1.371 × 10+04 | 4.526 × 10+03 | 3.264 × 10+03 | 2.913 × 10+03 | 3.432 × 10+03 | 2.894 × 10+03 | 2.898 × 10+03 | 2.892 × 10+03 | 2.899 × 10+03 | 2.887 × 10+03 | |
F25 | Std | 3.501 × 10+03 | 5.660 × 10+02 | 2.430 × 10+02 | 2.788 × 10+01 | 7.703 × 10+01 | 1.346 × 10+01 | 1.748 × 10+01 | 1.407 × 10+01 | 1.738 × 10+01 | 4.190 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 7.599 × 10−07 (+) | 3.020 × 10−11 (+) | 1.765 × 10−02 (+) | 8.684 × 10−03 (+) | 9.626 × 10−02 (-) | 1.597 × 10−03 (+) | ||
Rank | 10 | 9 | 7 | 6 | 7 | 2 | 5 | 3 | 4 | 1 | |
Ave | 1.451 × 10+04 | 9.795 × 10+03 | 7.330 × 10+03 | 6.035 × 10+03 | 9.499 × 10+03 | 6.261 × 10+03 | 4.376 × 10+03 | 5.832 × 10+03 | 6.505 × 10+03 | 2.874 × 10+03 | |
F26 | Std | 2.489 × 10+03 | 9.774 × 10+02 | 1.257 × 10+03 | 9.003 × 10+02 | 6.490 × 10+02 | 1.467 × 10+03 | 1.750 × 10+03 | 1.197 × 10+03 | 9.291 × 10+02 | 4.539 × 10+01 |
P | 2.281 × 10−11 (+) | 2.281 × 10−11 (+) | 2.281 × 10−11 (+) | 2.281 × 10−11 (+) | 2.281 × 10−11 (+) | 3.268 × 10−09 (+) | 1.010 × 10−03 (+) | 1.585 × 10−09 (+) | 3.865 × 10−11 (+) | ||
Rank | 10 | 8 | 8 | 2 | 4 | 7 | 6 | 3 | 4 | 1 | |
Ave | 4.849 × 10+03 | 4.388 × 10+03 | 3.338 × 10+03 | 3.302 × 10+03 | 3.995 × 10+03 | 3.266 × 10+03 | 3.261 × 10+03 | 3.258 × 10+03 | 3.261 × 10+03 | 3.261 × 10+03 | |
F27 | Std | 5.139 × 10+02 | 3.380 × 10+02 | 6.802 × 10+01 | 5.730 × 10+01 | 4.048 × 10+02 | 3.984 × 10+01 | 2.289 × 10+01 | 2.773 × 10+01 | 3.142 × 10+01 | 2.124 × 10+01 |
P | 2.281 × 10−11 (+) | 2.281 × 10−11 (+) | 3.965 × 10−08 (+) | 2.266 × 10−03 (+) | 3.020 × 10−11 (+) | 8.650 × 10−01 (-) | 9.941 × 10−01 (-) | 3.555 × 10−01 (-) | 6.952 × 10−01 (-) | ||
Rank | 10 | 8 | 7 | 6 | 8 | 5 | 1 | 2 | 4 | 2 | |
Ave | 1.173 × 10+04 | 6.283 × 10+03 | 3.934 × 10+03 | 3.302 × 10+03 | 4.629 × 10+03 | 3.145 × 10+03 | 3.138 × 10+03 | 3.146 × 10+03 | 3.134 × 10+03 | 3.146 × 10+03 | |
F28 | Std | 1.795 × 10+03 | 5.603 × 10+02 | 5.273 × 10+02 | 1.315 × 10+02 | 3.658 × 10+02 | 6.158 × 10+01 | 6.079 × 10+01 | 6.375 × 10+01 | 5.980 × 10+01 | 6.040 × 10+01 |
P | 2.489 × 10−11 (+) | 2.489 × 10−11 (+) | 2.489 × 10−11 (+) | 2.655 × 10−10 (+) | 2.489 × 10−11 (+) | 8.158 × 10−01 (-) | 3.973 × 10−01 (-) | 2.700 × 10−01 (-) | 3.447 × 10−01 (-) | ||
Rank | 10 | 9 | 7 | 6 | 7 | 4 | 2 | 5 | 1 | 3 | |
Ave | 1.684 × 10+04 | 6.073 × 10+03 | 4.534 × 10+03 | 4.239 × 10+03 | 6.349 × 10+03 | 4.232 × 10+03 | 3.971 × 10+03 | 4.161 × 10+03 | 4.165 × 10+03 | 3.759 × 10+03 | |
F29 | Std | 1.970 × 10+04 | 8.848 × 10+02 | 3.384 × 10+02 | 2.839 × 10+02 | 8.746 × 10+02 | 3.307 × 10+02 | 2.683 × 10+02 | 2.764 × 10+02 | 2.971 × 10+02 | 8.156 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.922 × 10−09 (+) | 3.020 × 10−11 (+) | 9.260 × 10−09 (+) | 2.531 × 10−04 (+) | 1.473 × 10−07 (+) | 1.359 × 10−07 (+) | ||
Rank | 10 | 8 | 7 | 5 | 8 | 6 | 2 | 3 | 4 | 1 | |
Ave | 1.976 × 10+09 | 3.641 × 10+08 | 3.093 × 10+06 | 2.453 × 10+06 | 2.038 × 10+08 | 1.135 × 10+04 | 9.053 × 10+03 | 1.266 × 10+04 | 1.186 × 10+04 | 7.841 × 10+03 | |
F30 | Std | 1.208 × 10+09 | 8.772 × 10+08 | 2.349 × 10+06 | 6.388 × 10+06 | 2.261 × 10+08 | 4.707 × 10+03 | 3.122 × 10+03 | 4.754 × 10+03 | 4.677 × 10+03 | 1.494 × 10+03 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.988 × 10−02 (+) | 1.809 × 10−01 (-) | 4.942 × 10−05 (+) | 4.226 × 10−03 (+) | ||
Rank | 10 | 9 | 6 | 6 | 8 | 3 | 2 | 5 | 3 | 1 | |
average Rank | 9.48 | 7.31 | 5.93 | 5.28 | 7.62 | 4.45 | 2.90 | 4.48 | 4.69 | 1.21 | |
+/NaN/- | 29/0/0 | 29/0/0 | 26/0/3 | 26/0/3 | 29/0/0 | 26/0/3 | 18/0/11 | 24/0/5 | 23/0/6 |
F | Index | BAS | AOA | POA | DBO | LMHHO | TSSA | QMESSA | LSSA | SSA | IBSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
Ave | 2.327 × 10+11 | 1.054 × 10+11 | 3.740 × 10+10 | 6.434 × 10+06 | 4.295 × 10+10 | 4.616 × 10+03 | 2.132 × 10+03 | 7.688 × 10+03 | 6.042 × 10+03 | 1.450 × 10+03 | |
F1 | Std | 1.963 × 10+10 | 1.063 × 10+10 | 9.396 × 10+09 | 8.734 × 10+06 | 8.228 × 10+09 | 5.021 × 10+03 | 2.114 × 10+03 | 6.130 × 10+03 | 7.941 × 10+03 | 1.079 × 10+03 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.324 × 10−02 (+) | 4.733 × 10−01 (-) | 4.685 × 10−08 (+) | 9.883 × 10−03 (+) | ||
Rank | 10 | 9 | 7 | 6 | 7 | 3 | 2 | 4 | 4 | 1 | |
Ave | 3.267 × 10+05 | 1.740 × 10+05 | 6.121 × 10+04 | 1.111 × 10+05 | 2.093 × 10+05 | 3.115 × 10+02 | 5.825 × 10+03 | 1.692 × 10+04 | 3.166 × 10+02 | 4.511 × 10+02 | |
F3 | Std | 4.383 × 10+04 | 2.622 × 10+04 | 1.619 × 10+04 | 2.563 × 10+04 | 3.235 × 10+04 | 2.026 × 10+01 | 4.794 × 10+03 | 1.164 × 10+04 | 2.084 × 10+01 | 9.246 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.690 × 10−11 (+) | 9.833 × 10−08 (+) | 5.494 × 10−11 (+) | 3.690 × 10−11 (+) | ||
Rank | 10 | 8 | 6 | 7 | 9 | 1 | 4 | 5 | 2 | 3 | |
Ave | 9.334 × 10+07 | 2.921 × 10+04 | 6.270 × 10+03 | 6.450 × 10+02 | 1.136 × 10+04 | 4.710 × 10+02 | 5.110 × 10+02 | 4.708 × 10+02 | 4.740 × 10+02 | 5.049 × 10+02 | |
F4 | Std | 1.691 × 10+04 | 5.297 × 10+03 | 2.321 × 10+03 | 1.100 × 10+02 | 3.314 × 10+04 | 3.959 × 10+01 | 5.166 × 10+01 | 4.170 × 10+01 | 5.304 × 10+01 | 5.029 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 8.484 × 10−08 (+) | 3.020 × 10−11 (+) | 1.170 × 10−02 (+) | 5.201 × 10−01 (-) | 6.915 × 10−03 (+) | 2.109 × 10−02 (+) | ||
Rank | 10 | 9 | 8 | 6 | 7 | 1 | 4 | 1 | 5 | 3 | |
Ave | 1.459 × 10+03 | 1.099 × 10+03 | 8.997 × 10+02 | 9.447 × 10+02 | 1.022 × 10+03 | 8.719 × 10+02 | 8.166 × 10+02 | 8.584 × 10+02 | 8.812 × 10+02 | 8.090 × 10+02 | |
F5 | Std | 7.529 × 10+01 | 2.921 × 10+01 | 2.788 × 10+01 | 7.386 × 10+02 | 2.851 × 10+01 | 2.459 × 10+01 | 3.833 × 10+01 | 3.222 × 10+01 | 2.449 × 10+01 | 8.453 × 10+01 |
P | 3.341 × 10−11 (+) | 5.572 × 10−10 (+) | 2.754 × 10−03 (+) | 4.981 × 10−04 (+) | 5.573 × 10−10 (+) | 3.478 × 10−01 (-) | 5.539 × 10−08 (+) | 1.700 × 10−01 (+) | 2.971 × 10−01 (-) | ||
Rank | 10 | 8 | 5 | 9 | 7 | 1 | 3 | 4 | 1 | 6 | |
Ave | 7.077 × 10+02 | 6.856 × 10+02 | 6.679 × 10+02 | 6.597 × 10+02 | 6.923 × 10+02 | 6.593 × 10+02 | 6.296 × 10+02 | 6.522 × 10+02 | 6.609 × 10+02 | 6.617 × 10+02 | |
F6 | Std | 7.725 × 10+00 | 6.038 × 10+00 | 5.440 × 10+00 | 9.283 × 10+00 | 2.609 × 10+00 | 5.167 × 10+00 | 5.111 × 10+00 | 7.675 × 10+00 | 5.526 × 10+00 | 4.797 × 10+00 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.430 × 10−05 (+) | 2.972 × 10−01 (-) | 3.020 × 10−11 (+) | 3.772 × 10−02 (+) | 3.020 × 10−11 (+) | 2.678 × 10−06 (+) | 4.733 × 10−01 (-) | ||
Rank | 10 | 9 | 7 | 8 | 4 | 2 | 1 | 4 | 6 | 3 | |
Ave | 5.787 × 10+03 | 1.857 × 10+03 | 1.707 × 10+03 | 1.346 × 10+03 | 1.917 × 10+03 | 1.714 × 10+03 | 1.286 × 10+03 | 1.610 × 10+03 | 1.725 × 10+03 | 1.447 × 10+03 | |
F7 | Std | 5.095 × 10+02 | 6.892 × 10+01 | 8.615 × 10+01 | 1.522 × 10+02 | 3.674 × 10+01 | 1.051 × 10+02 | 9.712 × 10+01 | 1.536 × 10+02 | 9.454 × 10+01 | 4.546 × 10+01 |
P | 3.020 × 10−11 (+) | 4.573 × 10−09 (+) | 5.106 × 10−01 (-) | 6.066 × 10−11 (+) | 3.020 × 10−11 (+) | 6.952 × 10−01 (-) | 3.020 × 10−11 (+) | 2.052 × 10−03 (+) | 4.376 × 10−01 (-) | ||
Rank | 10 | 6 | 3 | 5 | 4 | 8 | 2 | 8 | 7 | 1 | |
Ave | 1.753 × 10+03 | 1.438 × 10+03 | 1.222 × 10+03 | 1.254 × 10+03 | 1.382 × 10+03 | 1.203 × 10+03 | 1.091 × 10+03 | 1.191 × 10+03 | 1.202 × 10+03 | 1.160 × 10+03 | |
F8 | Std | 8.839 × 10+01 | 4.326 × 10+01 | 4.723 × 10+02 | 7.225 × 10+01 | 5.300 × 10+01 | 2.211 × 10+01 | 3.963 × 10+01 | 4.066 × 10+01 | 3.781 × 10+01 | 1.030 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.034 × 10−03 (+) | 7.200 × 10−05 (+) | 3.020 × 10−11 (+) | 9.334 × 10−02 (-) | 1.547 × 10−09 (+) | 5.106 × 10−01 (-) | 7.978 × 10−02 (-) | ||
Rank | 10 | 6 | 9 | 6 | 6 | 3 | 2 | 5 | 4 | 1 | |
Ave | 4.462 × 10+04 | 2.443 × 10+04 | 1.469 × 10+04 | 1.735 × 10+04 | 2.181 × 10+04 | 1.296 × 10+04 | 1.161 × 10+04 | 1.206 × 10+04 | 1.274 × 10+04 | 8.795 × 10+03 | |
F9 | Std | 5.773 × 10+03 | 3.041 × 10+03 | 1.180 × 10+03 | 6.963 × 10+03 | 3.356 × 10+03 | 4.511 × 10+02 | 1.562 × 10+03 | 1.637 × 10+03 | 1.360 × 10+03 | 1.998 × 10+03 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.352 × 10−08 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 6.046 × 10−07 (+) | 2.602 × 10−08 (+) | 1.857 × 10−09 (+) | ||
Rank | 10 | 7 | 5 | 9 | 7 | 1 | 1 | 5 | 3 | 3 | |
Ave | 1.281 × 10+04 | 1.277 × 10+04 | 8.140 × 10+03 | 9.639 × 10+03 | 1.225 × 10+04 | 8.823 × 10+03 | 7.196 × 10+03 | 8.238 × 10+03 | 8.385 × 10+03 | 7.449 × 10+03 | |
F10 | Std | 5.554 × 10+02 | 8.715 × 10+02 | 1.033 × 10+03 | 1.505 × 10+03 | 1.220 × 10+03 | 8/038 × 10+02 | 7.312 × 10+02 | 9.307 × 10+02 | 8.612 × 10+02 | 4.829 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | ||
Rank | 7 | 8 | 5 | 9 | 9 | 3 | 2 | 5 | 3 | 1 | |
Ave | 5.481 × 10+04 | 1.869 × 10+04 | 5.279 × 10+03 | 1.654 × 10+03 | 1.143 × 10+04 | 1.380 × 10+03 | 1.286 × 10+03 | 1.561 × 10+03 | 1.366 × 10+03 | 1.438 × 10+03 | |
F11 | Std | 1.155 × 10+04 | 2.308 × 10+03 | 2.210 × 10+03 | 1.531 × 10+02 | 2.664 × 10+03 | 7.796 × 10+01 | 4.062 × 10+01 | 8.468 × 10+01 | 7.106 × 10+01 | 8.588 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | ||
Rank | 10 | 8 | 7 | 6 | 8 | 3 | 1 | 4 | 2 | 4 | |
Ave | 1.210 × 10+11 | 6.678 × 10+10 | 1.288 × 10+10 | 7.680 × 10+07 | 2.480 × 10+11 | 9.309 × 10+05 | 1.094 × 10+06 | 1.149 × 10+06 | 9.207 × 10+05 | 2.186 × 10+05 | |
F12 | Std | 2.700 × 10+10 | 1.198 × 10+10 | 6.951 × 10+09 | 5.274 × 10+07 | 6.684 × 10+09 | 7.504 × 10+05 | 7.030 × 10+05 | 6.205 × 10+05 | 5.311 × 10+05 | 5.189 × 10+04 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.202 × 10−08 (+) | 9.919 × 10−11 (+) | 2.438 × 10−09 (+) | 3.020 × 10−11 (+) | ||
Rank | 10 | 8 | 7 | 6 | 8 | 3 | 3 | 3 | 2 | 1 | |
Ave | 6.822 × 10+10 | 1.085 × 10+10 | 1.269 × 10+09 | 9.759 × 10+05 | 8.780 × 10+09 | 2.172 × 10+04 | 6.952 × 10+03 | 2.039 × 10+04 | 1.604 × 10+04 | 3.250 × 10+03 | |
F13 | Std | 2.273 × 10+10 | 6.972 × 10+09 | 2.634 × 10+09 | 1.231 × 10+06 | 3.820 × 10+09 | 1.408 × 10+04 | 5.999 × 10+03 | 1.325 × 10+04 | 9.831 × 10+03 | 3.865 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 7.389 × 10−11 (+) | 5.264 × 10−04 (+) | 3.020 × 10−11 (+) | 4.077 × 10−11 (+) | ||
Rank | 10 | 9 | 7 | 6 | 8 | 5 | 2 | 4 | 3 | 1 | |
Ave | 2.081 × 10+08 | 2.618 × 10+06 | 1.308 × 10+05 | 7.397 × 10+05 | 3.629 × 10+07 | 4.099 × 10+04 | 5.929 × 10+04 | 6.223 × 10+04 | 3.493 × 10+04 | 1.997 × 10+04 | |
F14 | Std | 1.057 × 10+08 | 3.324 × 10+06 | 1.161 × 10+05 | 7.188 × 10+05 | 3.142 × 10+07 | 3.274 × 10+04 | 5.083 × 10+04 | 4.016 × 10+04 | 3.615 × 10+04 | 1.008 × 10+04 |
P | 3.020 × 10−11 (+) | 6.066 × 10−11 (+) | 2.891 × 10−03 (+) | 1.202 × 10−08 (+) | 3.020 × 10−11 (+) | 5.395 × 10−01 (-) | 4.464 × 10−01 (-) | 1.580 × 10−01 (-) | 9.926 × 10−02 (-) | ||
Rank | 10 | 8 | 6 | 7 | 9 | 2 | 4 | 4 | 2 | 1 | |
Ave | 2.246 × 10+10 | 4.927 × 10+06 | 1.009 × 10+08 | 6.642 × 10+06 | 6.683 × 10+08 | 1.812 × 10+04 | 1.172 × 10+04 | 1.784 × 10+04 | 1.657 × 10+04 | 2.982 × 10+03 | |
F15 | Std | 7.915 × 10+09 | 2.679 × 10+07 | 2.193 × 10+08 | 2.148 × 10+07 | 6.608 × 10+08 | 8.620 × 10+03 | 5.676 × 10+03 | 6.864 × 10+03 | 9.578 × 10+03 | 4.910 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 9.260 × 10−09 (+) | 9.063 × 10−08 (+) | 3.020 × 10−11 (+) | 5.967 × 10−09 (+) | ||
Rank | 10 | 6 | 8 | 6 | 9 | 4 | 2 | 3 | 4 | 1 | |
Ave | 1.215 × 10+04 | 7.254 × 10+03 | 4.082 × 10+03 | 4.317 × 10+03 | 6.860 × 10+03 | 3.975 × 10+03 | 3.573 × 10+03 | 3.936 × 10+03 | 3.997 × 10+03 | 2.891 × 10+03 | |
F16 | Std | 3.178 × 10+03 | 1.636 × 10+03 | 6.041 × 10+02 | 6.396 × 10+02 | 1.145 × 10+03 | 5.707 × 10+02 | 5.215 × 10+02 | 5.002 × 10+02 | 4.675 × 10+02 | 1.678 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.464 × 10−10 (+) | 3.020 × 10−11 (+) | 1.174 × 10−09 (+) | 1.286 × 10−06 (+) | 4.200 × 10−10 (+) | 4.077 × 10−11 (+) | ||
Rank | 10 | 9 | 6 | 7 | 8 | 5 | 3 | 2 | 4 | 1 | |
Ave | 4.652 × 10+05 | 4.529 × 10+03 | 3.584 × 10+03 | 3.717 × 10+03 | 4.693 × 10+03 | 3.453 × 10+03 | 3.347 × 10+03 | 3.454 × 10+03 | 3.645 × 10+03 | 2.956 × 10+03 | |
F17 | Std | 5.711 × 10+05 | 7.187 × 10+02 | 4.720 × 10+02 | 3.870 × 10+02 | 7.231 × 10+02 | 3.819 × 10+02 | 3.743 × 10+02 | 3.357 × 10+02 | 4.153 × 10+02 | 1.845 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 9.063 × 10−08 (+) | 1.411 × 10−09 (+) | 3.020 × 10−11 (+) | 8.352 × 10−08 (+) | 1.635 × 10−05 (+) | 3.965 × 10−08 (+) | 3.965 × 10−08 (+) | ||
Rank | 10 | 8 | 5 | 5 | 9 | 4 | 2 | 3 | 5 | 1 | |
Ave | 5.023 × 10+08 | 2.899 × 10+07 | 1.300 × 10+06 | 2.565 × 10+06 | 6.120 × 10+07 | 1.700 × 10+05 | 2.022 × 10+05 | 2.482 × 10+05 | 1.592 × 10+05 | 5.558 × 10+04 | |
F18 | Std | 2.802 × 10+08 | 3.427 × 10+07 | 8.974 × 10+05 | 3.108 × 10+06 | 5.921 × 10+07 | 9.008 × 10+04 | 9.070 × 10+04 | 1.299 × 10+05 | 7.920 × 10+04 | 1.464 × 10+04 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.613 × 10−10 (+) | 3.020 × 10−11 (+) | 2.034 × 10−09 (+) | 2.610 × 10−10 (+) | ||
Rank | 10 | 8 | 6 | 7 | 9 | 3 | 4 | 5 | 2 | 1 | |
Ave | 8.624 × 10+09 | 4.667 × 10+05 | 5.105 × 10+06 | 9.952 × 10+05 | 1.921 × 10+08 | 2.097 × 10+04 | 2.249 × 10+04 | 2.494 × 10+04 | 2.109 × 10+04 | 4.102 × 10+03 | |
F19 | Std | 3.315 × 10+09 | 1.156 × 10+04 | 1.748 × 10+07 | 9.248 × 10+05 | 3.624 × 10+08 | 1.497 × 10+04 | 9.580 × 10+03 | 1.541 × 10+04 | 1.527 × 10+04 | 1.544 × 10+03 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.690 × 10−11 (+) | 3.020 × 10−11 (+) | 2.491 × 10−06 (+) | 3.690 × 10−11 (+) | 2.195 × 10−08 (+) | 4.311 × 10−08 (+) | ||
Rank | 10 | 5 | 8 | 7 | 9 | 2 | 2 | 6 | 4 | 1 | |
Ave | 3.830 × 10+03 | 3.510 × 10+03 | 3.229 × 10+03 | 3.457 × 10+03 | 3.821 × 10+03 | 3.416 × 10+03 | 3.305 × 10+03 | 3.358 × 10+03 | 3.572 × 10+03 | 3.250 × 10+03 | |
F20 | Std | 2.070 × 10+02 | 3.017 × 10+02 | 2.501 × 10+02 | 3.342 × 10+02 | 2.540 × 10+02 | 3.10 × 10+02 | 2.960 × 10+02 | 3.336 × 10+02 | 3.336 × 10+02 | 2.281 × 10+02 |
P | 2.594 × 10−02 (+) | 2.510 × 10−02 (+) | 4.801 × 10−07 (+) | 1.112 × 10−02 (+) | 7.483 × 10−02 (-) | 1.370 × 10−03 (+) | 7.221 × 10−06 (+) | 3.005 × 10−04 (+) | 1.857 × 10−01(-) | ||
Rank | 4 | 6 | 1 | 10 | 8 | 4 | 3 | 6 | 9 | 2 | |
Ave | 3.312 × 10+03 | 3.048 × 10+03 | 2.771 × 10+03 | 2.793 × 10+03 | 3.122 × 10+03 | 2.83 × 10+03 | 2.990 × 10+03 | 2.769 × 10+03 | 2.815 × 10+03 | 2.905 × 10+03 | |
F21 | Std | 1.231 × 10+02 | 7.399 × 10+01 | 6.457 × 10+01 | 6.693 × 10+01 | 9.779 × 10+01 | 3.104 × 10+02 | 6.650 × 10+01 | 7.998 × 10+01 | 1.226 × 10+02 | 5.500 × 10+01 |
P | 4.975 × 10−11 (+) | 2.491 × 10−06 (+) | 2.154 × 10−06 (+) | 4.943 × 10−05 (+) | 1.700 × 10−08 (+) | 2.813 × 10−02 (+) | 3.690 × 10−11 (+) | 4.744 × 10−06 (+) | 5.084 × 10−03 (+) | ||
Rank | 10 | 6 | 2 | 3 | 8 | 9 | 6 | 4 | 5 | 1 | |
Ave | 1.456 × 10+04 | 1.514 × 10+04 | 1.087 × 10+04 | 1.129 × 10+04 | 1.484 × 10+04 | 1.040 × 10+04 | 8.894 × 10+03 | 9.935 × 10+03 | 1.021 × 10+04 | 8.631 × 10+03 | |
F22 | Std | 5.520 × 10+02 | 6.106 × 10+02 | 9.859 × 10+02 | 1.153 × 10+03 | 9.413 × 10+02 | 1.075 × 10+03 | 9.539 × 10+02 | 1.031 × 10+03 | 9.167 × 10+02 | 1.237 × 10+03 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.547 × 10−09 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.352 × 10−08 (+) | 9.941 × 10−01 (-) | 1.868 × 10−05 (+) | 9.756 × 10−10 (+) | ||
Rank | 3 | 6 | 6 | 10 | 8 | 8 | 1 | 4 | 1 | 5 | |
Ave | 4.911 × 10+03 | 4.468 × 10+03 | 3.490 × 10+03 | 3.314 × 10+03 | 4.548 × 10+03 | 3.393 × 10+03 | 3.096 × 10+03 | 3.261 × 10+03 | 3.393 × 10+03 | 3.458 × 10+03 | |
F23 | Std | 2.726 × 10+02 | 2.850 × 10+02 | 1.375 × 10+02 | 2.001 × 10+02 | 2.668 × 10+02 | 1.374 × 10+02 | 5.471 × 10+01 | 1.245 × 10+02 | 1.100 × 10+02 | 1.502 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 5.297 × 10−01 (-) | 3.183 × 10−03 (+) | 3.020 × 10−11 (+) | 7.978 × 10−02 (-) | 7.389 × 10−11 (+) | 5.091 × 10−06 (+) | 4.676 × 10−02 (+) | ||
Rank | 10 | 9 | 6 | 5 | 8 | 4 | 1 | 2 | 3 | 7 | |
Ave | 5.670 × 10+03 | 4.943 × 10+03 | 3.636 × 10+03 | 3.482 × 10+03 | 4.790 × 10+03 | 3.543 × 10+03 | 3.344 × 10+03 | 3.414 × 10+03 | 3.521 × 10+03 | 3.716 × 10+03 | |
F24 | Std | 3.688 × 10+02 | 3.238 × 10+02 | 1.431 × 10+02 | 1.523 × 10+02 | 2.987 × 10+02 | 1.698 × 10+02 | 1.156 × 10+02 | 1.364 × 10+02 | 1.178 × 10+02 | 3.908 × 10+02 |
P | 4.975 × 10−11 (+) | 8.891 × 10−10 (+) | 8.999 × 10−01 (-) | 1.518 × 10−03 (+) | 2.223 × 10−09 (+) | 2.416 × 10−02 (+) | 1.010 × 10−08 (+) | 3.571 × 10−06 (+) | 1.076 × 10−02 (+) | ||
Rank | 10 | 9 | 5 | 4 | 8 | 6 | 1 | 2 | 6 | 3 | |
Ave | 5.178 × 10+04 | 1.456 × 10+04 | 5.860 × 10+03 | 3.099 × 10+03 | 7.068 × 10+03 | 3.053 × 10+03 | 3.061 × 10+03 | 3.090 × 10+03 | 3.053 × 10+03 | 3.053 × 10+03 | |
F25 | Std | 7.118 × 10+03 | 1.793 × 10+03 | 9.087 × 10+02 | 5.473 × 10+01 | 9.600 × 10+02 | 4.728 × 10+01 | 3.730 × 10+01 | 4.553 × 10+01 | 4.822 × 10+01 | 2.613 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 5.493 × 10−01 (-) | 3.020 × 10−11 (+) | 1.501 × 10−02 (+) | 3.514 × 10−02 (+) | 7.659 × 10−05 (+) | 1.171 × 10−02 (+) | ||
Rank | 10 | 9 | 7 | 6 | 8 | 2 | 2 | 5 | 4 | 1 | |
Ave | 2.919 × 10+04 | 1.604 × 10+04 | 1.186 × 10+04 | 8.723 × 10+03 | 1.391 × 10+04 | 7.109 × 10+03 | 6.155 × 10+03 | 5.523 × 10+03 | 7.223 × 10+03 | 4.994 × 10+03 | |
F26 | Std | 4.271 × 10+03 | 9.565 × 10+02 | 1.362 × 10+03 | 1.607 × 10+03 | 6.614 × 10+02 | 4.055 × 10+03 | 3.369 × 10+03 | 3.392 × 10+03 | 3.831 × 10+03 | 2.808 × 10+03 |
P | 1.956 × 10−11 (+) | 1.956 × 10−11 (+) | 7.257 × 10−11 (+) | 6.327 × 10−06 (+) | 1.956 × 10−11 (+) | 1.738 × 10−02 (+) | 1.526 × 10−01 (-) | 7.253 × 10−01 (-) | 2.520 × 10−02 (+) | ||
Rank | 10 | 7 | 5 | 5 | 2 | 8 | 2 | 2 | 8 | 1 | |
Ave | 7.823 × 10+03 | 7.169 × 10+03 | 4.117 × 10+03 | 3.881 × 10+03 | 6.398 × 10+03 | 3.724 × 10+03 | 3.579 × 10+03 | 3.542 × 10+03 | 3.667 × 10+03 | 3.602 × 10+03 | |
F27 | Std | 8.866 × 10+02 | 6.506 × 10+02 | 2.719 × 10+02 | 1.843 × 10+02 | 9.214 × 10+02 | 2.833 × 10+02 | 1.520 × 10+02 | 1.656 × 10+02 | 1.378 × 10+02 | 1.174 × 10+02 |
P | 1.206 × 10−10 (+) | 3.159 × 10−10 (+) | 4.113 × 10−07 (+) | 2.624 × 10−03 (+) | 4.616 × 10−10 (+) | 6.843 × 10−02 (-) | 3.671 × 10−03 (+) | 4.980 × 10−04 (+) | 4.290 × 10−01 (-) | ||
Rank | 10 | 8 | 7 | 5 | 9 | 6 | 2 | 2 | 4 | 1 | |
Ave | 2.314 × 10+04 | 1.178 × 10+04 | 6.090 × 10+03 | 4.072 × 10+03 | 7.432 × 10+03 | 3.293 × 10+03 | 3.293 × 10+03 | 3.293 × 10+03 | 3.298 × 10+03 | 3.293 × 10+03 | |
F28 | Std | 2.753 × 10+03 | 8.807 × 10+02 | 8.312 × 10+02 | 1.335 × 10+03 | 5.213 × 10+02 | 2.607 × 10+01 | 2.636 × 10+01 | 2.17 × 10+01 | 2.697 × 10+01 | 2.260 × 10+01 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 2.154 × 10−10 (+) | 4.616 × 10−10 (+) | 3.020 × 10−11 (+) | 5.592 × 10−01 (-) | 2.838 × 10−01 (-) | 4.207 × 10−02 (+) | 4.290 × 10−01 (-) | ||
Rank | 10 | 9 | 6 | 8 | 6 | 3 | 4 | 1 | 5 | 2 | |
Ave | 9.786 × 10+05 | 1.924 × 10+04 | 6.364 × 10+03 | 5.977 × 10+03 | 1.538 × 10+04 | 5.190 × 10+03 | 4.520 × 10+03 | 4.903 × 10+03 | 5.229 × 10+03 | 4.622 × 10+03 | |
F29 | Std | 1.898 × 10+06 | 7.218 × 10+03 | 6.039 × 10+02 | 7.624 × 10+02 | 6.783 × 10+03 | 4.868 × 10+02 | 3.585 × 10+02 | 3.770 × 10+02 | 3.781 × 10+02 | 2.446 × 10+02 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 1.558 × 10−108 (+) | 1.320 × 10−04 (+) | 3.338 × 10−11 (+) | 6.735 × 10−01 (-) | 3.805 × 10−07 (+) | 1.174 × 10−03 (+) | 9.470 × 10−01 (-) | ||
Rank | 10 | 9 | 6 | 6 | 8 | 4 | 1 | 3 | 4 | 1 | |
Ave | 1.520 × 10+10 | 1.022 × 10+09 | 2.079 × 10+08 | 1.677 × 10+07 | 8.250 × 10+08 | 1.491 × 10+06 | 8.921 × 10+05 | 1.849 × 10+06 | 1.423 × 10+06 | 8.664 × 10+05 | |
F30 | Std | 4.676 × 10+09 | 1.427 × 10+09 | 4.585 × 10+08 | 1.017 × 10+07 | 3.285 × 10+08 | 6.294 × 10+05 | 1.605 × 10+05 | 6.462 × 10+05 | 5.048 × 10+05 | 9.744 × 10+04 |
P | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 3.020 × 10−11 (+) | 8.189 × 10−01 (-) | 1.695 × 10−09 (+) | 5.092 × 10−08 (+) | ||
Rank | 10 | 9 | 7 | 6 | 7 | 4 | 2 | 5 | 3 | 1 | |
Average Rank | 9.44 | 7.79 | 5.96 | 6.55 | 7.48 | 3.86 | 2.37 | 3.82 | 3.96 | 2.03 | |
+/NaN/- | 29/0/0 | 29/0/0 | 26/0/3 | 27/0/2 | 28/0/1 | 21/0/8 | 22/0/7 | 26/0/3 | 20/0/9 |
F | Index | SSA1 | SSA2 | SSA3 | SSA4 | SSA5 | SSA6 | SSA | IBSSA |
---|---|---|---|---|---|---|---|---|---|
Mean | 4.271 × 10+03 | 2.543 × 10+03 | 2.525 × 10+03 | 2.965 × 10+03 | 1.812 × 10+03 | 2.482 × 10+03 | 7.593 × 10+03 | 1.430 × 10+03 | |
F1 | Std | 5.572 × 10+03 | 2.351 × 10+03 | 2.363 × 10+03 | 2.870 × 10+03 | 1.688 × 10+03 | 2.225 × 10+03 | 6.329 × 10+03 | 1.165 × 10+03 |
Rank | 7 | 4 | 4 | 6 | 2 | 3 | 8 | 1 | |
Mean | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | 3.000 × 10+02 | |
F3 | Std | 3.120 × 10−14 | 7.722 × 10−10 | 4.961 × 10−09 | 1.467 × 10−09 | 2.923 × 10−08 | 4.663 × 10−10 | 1.077 × 10−10 | 9.570 × 10−11 |
Rank | 1 | 4 | 6 | 5 | 7 | 3 | 8 | 2 | |
Mean | 4.183 × 10+02 | 4.400 × 10+02 | 4.463 × 10+02 | 4.382 × 10+02 | 4.333 × 10+02 | 4.488 × 10+02 | 4.319 × 10+02 | 4.030 × 10+02 | |
F4 | Std | 2.700 × 10+01 | 3.452 × 10+01 | 4.741 × 10+01 | 3.934 × 10+01 | 4.002 × 10+01 | 4.005 × 10+01 | 3.780 × 10+01 | 5.951 × 10+00 |
Rank | 2 | 4 | 8 | 5 | 6 | 7 | 3 | 1 | |
Mean | 7.573 × 10+02 | 7.705 × 10+02 | 7.200 × 10+02 | 7.742 × 10+02 | 7.602 × 10+02 | 7.506 × 10+02 | 7.538 × 10+02 | 6.538 × 10+02 | |
F5 | Std | 3.650 × 10+01 | 4.330 × 10+01 | 4.198 × 10+01 | 3.464 × 10+01 | 4.643 × 10+01 | 4.42 × 10+01 | 3.975 × 10+01 | 2.231 × 10+01 |
Rank | 3 | 7 | 2 | 5 | 8 | 5 | 3 | 1 | |
Mean | 6.487 × 10+02 | 6.502 × 10+02 | 6.483 × 10+02 | 6.501 × 10+02 | 6.483 × 10+02 | 6.473 × 10+02 | 6.459 × 10+02 | 6.411 × 10+02 | |
F6 | Std | 9.791 × 10+00 | 9.600 × 10+00 | 9.001 × 10+00 | 1.172 × 10+01 | 8.310 × 10+00 | 1.201 × 10+01 | 1.123 × 10+01 | 5.955 × 10+00 |
Rank | 5 | 7 | 3 | 8 | 2 | 6 | 3 | 1 | |
Mean | 1.192 × 10+03 | 1.236 × 10+03 | 9.67 × 10+02 | 1.203 × 10+03 | 1.273 × 10+03 | 1.213 × 10+03 | 1.219 × 10+03 | 9.910 × 10+02 | |
F7 | Std | 1.133 × 10+02 | 1.001 × 10+02 | 3.05 × 10+01 | 1.121 × 10+02 | 1.842 × 10+02 | 1.032 × 10+02 | 1.014 × 10+02 | 4.047 × 10+01 |
Rank | 4 | 4 | 1 | 4 | 8 | 7 | 3 | 2 | |
Mean | 9.703 × 10+02 | 9.653 × 10+02 | 9.823 × 10+02 | 9.766 × 10+02 | 9.601 × 10+02 | 9.786 × 10+02 | 9.772 × 10+02 | 9.342 × 10+02 | |
F8 | Std | 3.219 × 10+01 | 2.543 × 10+01 | 3.050 × 10+01 | 2.947 × 10+01 | 3.234 × 10+01 | 2.681 × 10+01 | 3.272 × 10+01 | 1.432 × 10+01 |
Rank | 6 | 2 | 7 | 3 | 3 | 5 | 8 | 1 | |
Mean | 4.515 × 10+03 | 5.255 × 10+03 | 5.311 × 10+03 | 5.278 × 10+03 | 5.169 × 10+03 | 5.190 × 10+03 | 5.259 × 10+03 | 4.364 × 10+03 | |
F9 | Std | 3.935 × 10+02 | 3.691 × 10+02 | 2.540 × 10+02 | 3.301 × 10+02 | 5.172 × 10+02 | 2.754 × 10+02 | 4.481 × 10+02 | 4.592 × 10+02 |
Rank | 2 | 5 | 4 | 6 | 7 | 1 | 8 | 3 | |
Mean | 4.613 × 10+03 | 5.343 × 10+03 | 5.233 × 10+03 | 5.376 × 10+03 | 5.539 × 10+03 | 5.266 × 10+03 | 5.314 × 10+03 | 4.587 × 10+03 | |
F10 | Std | 3.551 × 10+02 | 5.737 × 10+02 | 5.184 × 10+02 | 5.051 × 10+02 | 3.901 × 10+02 | 5.224 × 10+02 | 5.751 × 10+02 | 2.860 × 10+02 |
Rank | 2 | 7 | 3 | 5 | 5 | 4 | 7 | 1 | |
Mean | 1.339 × 10+03 | 1.318 × 10+03 | 1.324 × 10+03 | 1.323 × 10+03 | 1.325 × 10+03 | 1.321 × 10+03 | 1.339 × 10+03 | 1.214 × 10+03 | |
F11 | Std | 7.591 × 10+01 | 7.562 × 10+01 | 7.085 × 10+01 | 7.869 × 10+01 | 1.100 × 10+02 | 8.209 × 10+01 | 8.403 × 10+01 | 2.198 × 10+01 |
Rank | 6 | 2 | 3 | 4 | 7 | 5 | 8 | 1 | |
Mean | 1.003 × 10+04 | 1.033 × 10+04 | 8.463 × 10+03 | 8.881 × 10+03 | 8.661 × 10+03 | 8.627 × 10+03 | 3.696 × 10+04 | 7.438 × 10+03 | |
F12 | Std | 2.504 × 10+03 | 2.526 × 10+03 | 1.866 × 10+03 | 1.680 × 10+03 | 1.545 × 10+03 | 1.371 × 10+03 | 2.045 × 10+04 | 1.258 × 10+03 |
Rank | 6 | 7 | 3 | 5 | 3 | 2 | 8 | 1 | |
Mean | 7.384 × 10+03 | 7.061 × 10+03 | 6.195 × 10+03 | 6.961 × 10+03 | 6.905 × 10+03 | 6.565 × 10+03 | 2.426 × 10+04 | 2.541 × 10+03 | |
F13 | Std | 2.698 × 10+03 | 3.423 × 10+03 | 2.570 × 10+03 | 3.002 × 10+03 | 2.362 × 10+03 | 5.200 × 10+03 | 2.415 × 10+04 | 4.481 × 10+02 |
Rank | 6 | 7 | 2 | 4 | 3 | 4 | 8 | 1 | |
Mean | 4.772 × 10+03 | 5.483 × 10+03 | 5.319 × 10+03 | 4.360 × 10+03 | 5.592 × 10+03 | 5.778 × 10+03 | 6.273 × 10+03 | 4.777 × 10+03 | |
F14 | Std | 2.557 × 10+03 | 2.911 × 10+03 | 2.502 × 10+03 | 1.862 × 10+03 | 2.401 × 10+03 | 2.381 × 10+03 | 2.987 × 10+03 | 2.147 × 10+03 |
Rank | 3 | 7 | 4 | 1 | 5 | 5 | 8 | 2 | |
Mean | 4.682 × 10+03 | 4.287 × 10+03 | 3.774 × 10+03 | 4.491 × 10+03 | 3.943 × 10+03 | 4.962 × 10+03 | 1.230 × 10+04 | 2.343 × 10+03 | |
F15 | Std | 2.684 × 10+03 | 2.730 × 10+03 | 1.722 × 10+03 | 3.012 × 10+03 | 1.948 × 10+03 | 2.888 × 10+03 | 1.287 × 10+04 | 4.943 × 10+02 |
Rank | 5 | 4 | 2 | 6 | 3 | 7 | 8 | 1 | |
Mean | 2.852 × 10+03 | 2.771 × 10+03 | 2.841 × 10+03 | 2.891 × 10+03 | 2.893 × 10+03 | 2.311 × 10+03 | 2.896 × 10+03 | 2.821 × 10+03 | |
F16 | Std | 3.256 × 10+02 | 2.433 × 10+02 | 3.252 × 10+02 | 3.320 × 10+02 | 3.401 × 10+02 | 3.250 × 10+02 | 3.481 × 10+02 | 2.275 × 10+02 |
Rank | 5 | 1 | 4 | 6 | 7 | 3 | 8 | 1 | |
Mean | 2.481 × 10+03 | 2.480 × 10+03 | 2.533 × 10+03 | 2.608 × 10+03 | 2.479 × 10+03 | 2.488 × 10+03 | 2.522 × 10+03 | 2.051 × 10+03 | |
F17 | Std | 3.057 × 10+02 | 2.601 × 10+02 | 2.947 × 10+02 | 2.681 × 10+02 | 3.280 × 10+02 | 3.150 × 10+02 | 3.401 × 10+02 | 9.255 × 10+01 |
Rank | 3 | 2 | 6 | 6 | 3 | 5 | 8 | 1 | |
Mean | 9.251 × 10+03 | 9.579 × 10+03 | 8.674 × 10+03 | 8.790 × 10+03 | 7.881 × 10+03 | 8.782 × 10+03 | 1.469 × 10+05 | 7.091 × 10+03 | |
F18 | Std | 3.061 × 10+03 | 2.702 × 10+03 | 2.291 × 10+03 | 2.342 × 10+03 | 2.610 × 10+03 | 2.763 × 10+03 | 1.047 × 10+05 | 1.754 × 10+03 |
Rank | 6 | 6 | 2 | 4 | 3 | 5 | 8 | 1 | |
Mean | 4.610 × 10+03 | 5.461 × 10+03 | 5.457 × 10+03 | 5.636 × 10+03 | 4.728 × 10+03 | 4.451 × 10+03 | 1.283 × 10+04 | 4.911 × 10+03 | |
F19 | Std | 2.412 × 10+03 | 2.823 × 10+03 | 2.613 × 10+03 | 2.723 × 10+03 | 2.420 × 10+03 | 2.631 × 10+03 | 1.625 × 10+04 | 2.114 × 10+03 |
Rank | 1 | 6 | 5 | 6 | 3 | 3 | 8 | 2 | |
Mean | 2.771 × 10+03 | 2.771 × 10+03 | 2.753 × 10+03 | 2.665 × 10+03 | 2.672 × 10+03 | 2.861 × 10+03 | 2.792 × 10+03 | 2.308 × 10+03 | |
F20 | Std | 2.303 × 10+02 | 2.112 × 10+02 | 2.288 × 10+02 | 2.149 × 10+02 | 2.172 × 10+02 | 2.184 × 10+02 | 2.071 × 10+02 | 7.992 × 10+01 |
Rank | 7 | 4 | 6 | 2 | 3 | 8 | 5 | 1 | |
Mean | 2.523 × 10+03 | 2.535 × 10+03 | 2.573 × 10+03 | 2.538 × 10+03 | 2.573 × 10+03 | 2.529 × 10+03 | 2.547 × 10+03 | 2.461 × 10+03 | |
F21 | Std | 5.042 × 10+01 | 5.381 × 10+01 | 5.293 × 10+01 | 1.032 × 10+01 | 5.871 × 10+01 | 5.462 × 10+01 | 6.823 × 10+01 | 5.293 × 10+01 |
Rank | 1 | 4 | 5 | 6 | 8 | 3 | 7 | 1 | |
Mean | 5.831 × 10+03 | 4.856 × 10+03 | 5.427 × 10+03 | 6.188 × 10+03 | 6.349 × 10+03 | 5.882 × 10+03 | 5.998 × 10+03 | 2.309 × 10+03 | |
F22 | Std | 2.302 × 10+03 | 2.331 × 10+03 | 2.291 × 10+03 | 1.862 × 10+03 | 1.701 × 10+03 | 1.261 × 10+02 | 1.981 × 10+03 | 4.708 × 10+01 |
Rank | 5 | 4 | 3 | 5 | 5 | 2 | 5 | 1 | |
Mean | 2.971 × 10+03 | 2.983 × 10+03 | 2.961 × 10+03 | 2.972 × 10+03 | 2.972 × 10+03 | 2.381 × 10+03 | 2.951 × 10+03 | 2.861 × 10+03 | |
F23 | Std | 1.422 × 10+02 | 1.699 × 10+02 | 9.160 × 10+01 | 7.445 × 10+01 | 1.121 × 10+02 | 3.242 × 10+01 | 8.183 × 10+01 | 3.099 × 10+01 |
Rank | 7 | 8 | 4 | 4 | 6 | 1 | 3 | 1 | |
Mean | 3.132 × 10+03 | 3.133 × 10+03 | 3.161 × 10+03 | 3.141 × 10+03 | 3.229 × 10+03 | 3.001 × 10+03 | 3.081 × 10+03 | 2.971 × 10+03 | |
F24 | Std | 8.812 × 10+01 | 1.032 × 10+02 | 1.969 × 10+02 | 1.572 × 10+02 | 2.688 × 10+02 | 3.962 × 10+01 | 7.766 × 10+01 | 2.096 × 10+01 |
Rank | 4 | 5 | 7 | 6 | 8 | 2 | 3 | 1 | |
Mean | 2.903 × 10+03 | 2.903 × 10+03 | 2.908 × 10+03 | 2.892 × 10+03 | 2.903 × 10+03 | 2.903 × 10+03 | 2.899 × 10+03 | 2.887 × 10+03 | |
F25 | Std | 1.472 × 10+01 | 1.881 × 10+01 | 2.062 × 10+01 | 1.421 × 10+01 | 2.052 × 10+01 | 3.262 × 10+01 | 1.738 × 10+01 | 4.190 × 10+00 |
Rank | 2 | 4 | 6 | 1 | 5 | 7 | 8 | 2 | |
Mean | 5.813 × 10+03 | 6.302 × 10+03 | 6.205 × 10+03 | 5.740 × 10+03 | 5.771 × 10+03 | 6.401 × 10+03 | 6.505 × 10+03 | 2.874 × 10+03 | |
F26 | Std | 1.760 × 10+02 | 1.933 × 10+02 | 1.571 × 10+02 | 1.844 × 10+02 | 1.820 × 10+02 | 4.789 × 10+02 | 9.291 × 10+02 | 4.539 × 10+01 |
Rank | 2 | 6 | 2 | 2 | 2 | 7 | 8 | 1 | |
Mean | 3.362 × 10+03 | 3.271 × 10+03 | 3.291 × 10+03 | 3.270 × 10+03 | 3.329 × 10+03 | 3.261 × 10+03 | 3.261 × 10+03 | 3.261 × 10+03 | |
F27 | Std | 3.813 × 10+02 | 4.312 × 10+01 | 5.532 × 10+01 | 3.301 × 10+01 | 2.723 × 10+02 | 5.323 × 10+01 | 3.142 × 10+01 | 2.124 × 10+01 |
Rank | 8 | 5 | 6 | 4 | 7 | 3 | 2 | 1 | |
Mean | 3.148 × 10+03 | 3.141 × 10+03 | 3.153 × 10+03 | 3.147 × 10+03 | 3.144 × 10+03 | 3.141 × 10+03 | 3.134 × 10+03 | 3.146 × 10+03 | |
F28 | Std | 5.832 × 10+01 | 6.373 × 10+01 | 9.282 × 10+01 | 5.590 × 10+01 | 7.612 × 10+01 | 7.634 × 10+01 | 5.980 × 10+01 | 6.040 × 10+01 |
Rank | 3 | 5 | 8 | 2 | 6 | 7 | 1 | 4 | |
Mean | 4.225 × 10+03 | 4.214 × 10+03 | 4.311 × 10+03 | 4.190 × 10+03 | 4.241 × 10+03 | 4.112 × 10+03 | 4.165 × 10+03 | 3.759 × 10+03 | |
F29 | Std | 2.767 × 10+02 | 2.942 × 10+02 | 2.409 × 10+02 | 2.771 × 10+02 | 2.710 × 10+02 | 2.441 × 10+02 | 2.971 × 10+02 | 8.156 × 10+01 |
Rank | 5 | 8 | 3 | 3 | 5 | 2 | 5 | 1 | |
Mean | 8.971 × 10+03 | 9.134 × 10+03 | 8.568 × 10+03 | 8.269 × 10+03 | 8.121 × 10+03 | 8.092 × 10+03 | 1.186 × 10+04 | 7.841 × 10+03 | |
F30 | Std | 3.243 × 10+03 | 2.927 × 10+03 | 2.322 × 10+03 | 2.097 × 10+03 | 2.036 × 10+03 | 2.210 × 10+03 | 4.677 × 10+03 | 1.494 × 10+03 |
Rank | 6 | 6 | 5 | 4 | 2 | 3 | 8 | 1 | |
Average Rank | 4.24 | 5.00 | 4.27 | 4.41 | 4.89 | 4.31 | 6.13 | 1.34 |
Algorithm | Optimal Cost | ||
---|---|---|---|
IBSSA | 0.788453095 | 0.408001671 | 263.8523490 |
SSA | 0.77781984 | 0.438927512 | 263.9379689 |
QMESSA | 0.795006313 | 0.389797431 | 263.883539 |
LSSA | 0.796552858 | 0.385572543 | 263.8996827 |
DBO | 0.782984069 | 0.424106744 | 263.8846622 |
PSO | 0.783093547 | 0.423354054 | 263.8735309 |
BBO | 0.767296004 | 0.47128734 | 264.2056443 |
DE | 0.794908511 | 0.38974078 | 263.8894148 |
SCA | 0.77118356 | 0.456863478 | 264.3307459 |
GWO | 0.794237083 | 0.39190159 | 263.8767489 |
Algorithm | Optimal Cost | ||||
---|---|---|---|---|---|
LBSSA | 0.203218961 | 3.294670414 | 9.069595186 | 0.206265425 | 1.706856383 |
SSA | 0.165051351 | 4.097704324 | 9.260502197 | 0.204655027 | 1.773439207 |
QMESSA | 0.217523767 | 3.290733718 | 8.191590356 | 0.250364574 | 1.878052948 |
LSSA | 0.17104475 | 4.023696728 | 9.102118616 | 0.206013629 | 1.756034065 |
DBO | 0.186498231 | 3.638225997 | 9.055128739 | 0.206232584 | 1.724475807 |
GSA | 0.199006049 | 5.711672281 | 10 | 0.223617772 | 2.370518451 |
PSO | 0.948066518 | 1.635150837 | 2 | 2 | 1.09 × 1014 |
BBO | 0.971028105 | 1.587812929 | 2 | 2 | 1.09 × 1014 |
DE | 0.790668962 | 2 | 2 | 2 | 1.09 × 1014 |
ACO | 1 | 4 | 3 | 2 | 1.69 × 105 |
SCA | 0.220211363 | 3.677689586 | 10 | 0.223170925 | 2.10 × 100 |
GWO | 0.20440709 | 3.365330403 | 9.044316864 | 0.208323683 | 1.729436313 |
Algorithm | Optimal Cost | |||
---|---|---|---|---|
BSSA | 0.139154068 | 1.3 | 11.89397514 | 3.661894436 |
SSA | 0.137726491 | 1.259414612 | 12.55768659 | 3.678904737 |
ACO | 1 | 3 | 2 | 3.90 × 10+02 |
GSA | 0.126956751 | 1.278090168 | 8.477804652 | 5.65 × 100 |
PSO | 2.000061051 | 2 | 2 | 409.7905129 |
BBO | 2.001206211 | 2.000000034 | 2 | 410.0817285 |
SCA | 0.133922851 | 1.177607705 | 13.42006216 | 3.897248467 |
GWO | 0.139187167 | 1.3 | 11.89071154 | 3.662048997 |
Algorithms | Optimal Cost | ||||
---|---|---|---|---|---|
SSA | 0.616408543 | 0.400000000 | 45.27477441 | 162.0971425 | 4797.882431 |
GWO | 0.619044177 | 0.400000000 | 45.30387753 | 161.9905659 | 4797.882715 |
SCA | 0.692652654 | 0.400000000 | 48.43816405 | 137.6513306 | 4797.804015 |
BBO | 0.648230107 | 0.400000000 | 46.54471795 | 151.3302171 | 4797.804015 |
QMESSA | 0.778107118 | 0.509357435 | 46.02728934 | 131.7523278 | 4797.804015 |
IBSSA | 0.539571396 | 0.400000000 | 41.97999301 | 187.3333333 | 4797.804015 |
Algorithms | Optimal Cost | ||||
---|---|---|---|---|---|
SSA | 49.85000 | 78.22220 | 0.9000 | 2.43200 | 0.02111089 |
GWO | 50.00000 | 80.00000 | 0.9000 | 2.33628 | 0.01126443 |
SCA | 50.00000 | 80.00000 | 0.9500 | 2.35641 | 0.01984311 |
BBO | 50.00000 | 80.00000 | 0.9000 | 2.45123 | 0.01653121 |
QMESSA | 50.00000 | 80.000005 | 1.7546 | 5.0000 | 0.006624354 |
IBSSA | 50.00000 | 80.00000 | 1.7650 | 5.0000 | 0.006623211 |
Algorithms | Optimal Cost | ||||
---|---|---|---|---|---|
SSA | 43 | 16 | 19 | 49 | 2.81875115 × 10−12 |
GWO | 45 | 20 | 22 | 50 | 2.12875411 × 10−08 |
SCA | 33 | 15 | 15 | 44 | 7.87251312 × 10−11 |
BBO | 50 | 11 | 22 | 51 | 4.21873112 × 10−10 |
QMESSA | 43 | 16 | 19 | 49 | 2.71023412 × 10−12 |
IBSSA | 43 | 16 | 19 | 49 | 2.70012421 × 10−12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Yang, C.; Zhu, D.; Liu, Y. A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization. Electronics 2024, 13, 2839. https://doi.org/10.3390/electronics13142839
Zhao X, Yang C, Zhu D, Liu Y. A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization. Electronics. 2024; 13(14):2839. https://doi.org/10.3390/electronics13142839
Chicago/Turabian StyleZhao, Xuhua, Chao Yang, Donglin Zhu, and Yujia Liu. 2024. "A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization" Electronics 13, no. 14: 2839. https://doi.org/10.3390/electronics13142839
APA StyleZhao, X., Yang, C., Zhu, D., & Liu, Y. (2024). A Hybrid Algorithm Based on Multi-Strategy Elite Learning for Global Optimization. Electronics, 13(14), 2839. https://doi.org/10.3390/electronics13142839