Optimizing Parameter Extraction in Grid Information Models Based on Improved Convolutional Neural Networks
Abstract
:1. Introduction
2. Analysis of Key Parameters of GIM
2.1. Key Parameters of GIM
2.2. Representation of Key Parameters in GIM in Engineering Design Drawings
2.3. Characteristics of Representation in Power Grid Equipment Engineering Design Drawings
3. Optimization Algorithm for Automatic Extraction of Key Parameters in GIM Based on Improved CNN + DFS
3.1. Component Symbol Detection
3.2. Text Recognition and Association
3.3. Connection Detection
4. Example Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vinnikov, V.; Pshehotskaya, E. Deficiencies of Computational Image Recognition in Comparison to Human Counterpart. In Proceedings of the Seventh International Congress on Information and Communication Technology, London, UK, 21–24 February 2022; Springer: Singapore, 2023; Volume 447, pp. 483–491. [Google Scholar]
- Yang, M.; Kumar, P.; Bhola, J.; Shabaz, M. Development of image recognition software based on artificial intelligence algorithm for the efficient sorting of apple fruit. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 322–330. [Google Scholar] [CrossRef]
- Kwak, D.; Choi, J.; Lee, S. Rethinking Breast Cancer Diagnosis through Deep Learning Based Image Recognition. Sensors 2023, 23, 2307. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Maharana, M.K.; Jena, C.; Kumar, A.P.; Akkenaguntla, K. Power System Fault Detection Using Image Processing And Pattern Recognition. In Proceedings of the 2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC), Bhubaneswar, India, 26–28 November 2021; Volume 5. [Google Scholar]
- Mishra, M.; Biswal, M.; Bansal, R.C.; Nayak, J.; Abraham, A.; Malik, O.P. Intelligent Computing in Electrical Utility Industry 4.0: Concept, Key Technologies, Applications and Future Directions. IEEE Access 2022, 10, 100312–100336. [Google Scholar] [CrossRef]
- Krasnyansky; Matveykin, M.; Dmitrievsky, V.; Kobelev, B.; Terekhova, A.; Kobeleva, V. Digitalization of Energy Management in an Industrial Enterprise. In Proceedings of the 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 10–12 November 2021; pp. 633–635. [Google Scholar]
- Praanesh, K.S.; Vardhan, V.V.; Varun, C.M.; Naik, B.B.; Kulkarni, B.; Sailaja, V. Tariff Digitalization for Power Theft Detection in Transmission Lines. In Proceedings of the 2022 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 1–3 December 2022; pp. 400–405. [Google Scholar]
- Wang, R.; Wu, X.; Leng, Y.; Hou, H.; Wu, S.; Qiu, J. A review of the development of digital twin technology in new type power systems. Power Syst. Technol. 2024, 1–21. [Google Scholar] [CrossRef]
- Redmond, J. Revit 3D Modeling Optimizes Substation Design. In Proceedings of the 2022 IEEE Rural Electric Power Conference (REPC), Savannah, GA, USA, 5–7 April 2022; pp. 84–87. [Google Scholar]
- Bai, H.; Guo, K.; Chang, L. 3D Power grid modeling and verification method based on GIM technology and YOLOv3 deep network. J. Shenyang Univ. Technol. 2023, 45.03, 247–252. [Google Scholar]
- Sun, K.; Jing, T.; An, X.; Hu, J. Research on Data Lightweight Method of GIM Model Based on BIMBase Technology. Electr. Power Inf. Commun. Technol. 2023, 21, 9–15. [Google Scholar]
- Shi, Z.; Meng, C.; Zhang, S.; He, S.; Zhang, H. Research on construction design scheme of power transmission and transformation project based on power grid information model. Manuf. Autom. 2023, 45, 71–74. [Google Scholar]
- Tao, L.; Zhu, J.; Cai, H. Classic machine learning for image recognition in wall column construction drawings. J. Shanghai Univ. Sci. Ed. 2021, 27, 940–949. [Google Scholar]
- Xiao, Y.; He, Z.; Lin, S. Rapid visual positioning technology of sheet metal parts based on electronic drawing template. Inf. Technol. 2023, 6, 24–29. [Google Scholar]
- Liu, L.; Zhang, Y. Simulation of Fuzzy Recognition of Vector Symbols Based on Adaptive Matching. Comput. Simul. 2021, 38, 401–404. [Google Scholar]
- Zhou, C.; Xu, L.; Qiao, W. Feature Recognition and Matching Method of Shaft Parts Drawing. Mach. Des. Res. 2022, 38, 126–129. [Google Scholar]
- Wang, K. Research on Automatic Recognition Technology of Electrical Wiring Drawings; Southeast University: Nanjing, China, 2022. [Google Scholar]
- Ma, M.; Jia, L.; Su, L. Application of Engineering Drawing Image Recognition Technology in Digital Delivery. Pet. Chem. Constr. 2021, 43, 63–65. [Google Scholar]
- Dong, Z.; Zhao, Y.; Tian, F. Character recognition and detection algorithm of power grid engineering drawings based on improved convolutional neural network. Electron. Des. Eng. 2023, 31, 27–31. [Google Scholar]
- Yang, Q.; You, H.; Shi, H.; Yang, Y.; Kong, D. Secondary circuit intelligent verification system based on image deep learning. Manuf. Autom. 2023, 45, 56–58+62. [Google Scholar]
- Uzair, W.; Chai, D.; Rassau, A. Automated Netlist Generation from Offline Hand-Drawn Circuit Diagrams. In Proceedings of the 2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Port Macquarie, Australia, 28 November–1 December 2023; pp. 364–370. [Google Scholar]
- Yu, W.; Zhang, P. Convolutional Neural Networks’ Applications in Automatic Target Recognition for Synthetic Aperture Images. In Proceedings of the 2021 International Conference of Optical Imaging and Measurement (ICOIM), Xi’an, China, 27–29 August 2021; pp. 9–13. [Google Scholar]
- Li, W.; Gao, L. Improved RetinaNet process flow detection algorithm. J. Electron. Meas. Instrum. 2023, 37, 104–112. [Google Scholar]
Index | Input Layer | Number of Modules | Number of Parameters | Module Name | Parameter Settings |
---|---|---|---|---|---|
0 | −1 | 1 | 3520 | Conv | [3, 32, 6, 2, 2] |
1 | −1 | 1 | 20,736 | Rep_Block | [32, 64, 3, 2] |
2 | −1 | 1 | 18,816 | C3 | [64, 64, 1] |
3 | −1 | 1 | 82,432 | Rep_Block | [64, 128, 3, 2] |
4 | −1 | 1 | 74,560 | MT_Block | [128, 128, 1] |
5 | −1 | 1 | 328,704 | Rep_Block | [128, 256, 3, 2] |
6 | −1 | 1 | 296,704 | MT_Block | [256, 256, 1] |
7 | −1 | 1 | 1,312,768 | Rep_Block | [256, 512, 3, 2] |
8 | −1 | 1 | 1,182,976 | MT_Block | [512, 512, 1] |
9 | −1 | 1 | 656,896 | SPPF | [512, 512, 5] |
10 | −1 | 1 | 131,584 | Conv | [512, 256, 1, 1] |
11 | −1 | 1 | 0 | Upsampling | [None, 2, ‘nearest’] |
12 | [1, 6] | 1 | 0 | Concat | [1] |
13 | −1 | 1 | 391,984 | C3 | [512, 256, 1, False] |
14 | −1 | 1 | 33,024 | Conv | [256, 128, 1, 1] |
15 | −1 | 1 | 0 | Upsampling | [None, 2, ‘nearest’] |
16 | [1, 4] | 1 | 0 | Concat | [1] |
17 | −1 | 1 | 90,880 | C3 | [256, 128, 1, False] |
18 | −1 | 1 | 6448 | CA_Block | [128, 128, 8] |
19 | −1 | 1 | 147,712 | Conv | [128, 128, 3, 2] |
20 | [1, 14] | 1 | 0 | Concat | [1] |
21 | −1 | 1 | 296,448 | C3 | [256, 256, 1, False] |
22 | −1 | 1 | 12,848 | CA_Block | [256, 256, 16] |
23 | −1 | 1 | 590,336 | Conv | [256, 256, 3, 2] |
24 | [1, 10] | 1 | 0 | Concat | [1] |
25 | −1 | 1 | 1,182,720 | C3 | [512, 512, 1, False] |
26 | −1 | 1 | 25,648 | CA_Block | [512, 512, 32] |
27 | [18, 22, 26] | 1 | 24,273 | Detect | [4,[[…], […], […]], […]] |
Symbol Number | Symbol Name |
---|---|
(1) | Wind farm output circuit |
(34) | Reactor circuit |
(5) | transformer |
(24) | Lightning arrester |
(31) | CT |
(42) | CT |
(59) | CT |
Text Number | Recognized Text Content | Text Number | Recognized Text Content | Text Number | Recognized Text Content |
---|---|---|---|---|---|
(T-169) | [Jin Guan ] Metal oxide arrester | (T-170) | WA.ST1 | (T-171) | YH10W-204/532 |
(T-172) | F2 | (T-173) | 2× (NAHLGJQ-1440/120) | (T-174) | [Heng Bian] Three-phase integrated on-site assembly transformer |
(T-239) | 1000/1000/334 MVA | (T-240) | 525/230 ± 2 × 2.5%/66 kV | (T-241) | YN, a0, d11, ODAF |
(T-242) | U1-3 = 67%, U1-2 = 20% | (T-243) | F1 | (T-244) | U2-3 = 40% |
(T-245) | High voltage bushing CT:5P20/0.2/0.5 | (T-246) | 5P20 | (T-247) | 0.2 |
(T-248) | 0.5 | (T-249) | 2000/1 A 15 VA | (T-250) | Medium voltage bushing CT: 5P20/0.2 |
(T-251) | 4000/1 A 15 VA | (T-252) | Low voltage bushing CT: TPY/TPY/5P20/0.2 | (T-253) | 5P20 |
(T-254) | 0.2 | (T-255) | 0.2 | (T-256) | 5P20 |
(T-257) | TPY | (T-258) | TPY | (T-259) | 0.2S |
(T-260) | 5P20 | (T-261) | TPY | (T-262) | TPY |
(T-263) | F1 | (T-264) | Q22 | (T-265) | Q11 |
(T-266) | Q21 | (T-267) | T2 | (T-268) | Q1 |
(T-269) | T1 | (T-270) | WC1.W01 | (T-375) | 4000/1A 15VA |
(T-376) | 72.5 kV, 5000 A | (T-377) | 2000/4000/1 A 15 VA | (T-378) | No.1 main transformer |
(T-379) | [Jin Guan] Metal oxide arrester | (T-380) | YH20W-420/1046 kV | (T-381) | 2× (NAHLGJQ-1440/120) |
(T-382) | 2× (NAHLGJQ-1440/120) | (T-383) | [Jin Guan] Zinc oxide lightning arrester YH5W-96/250 | (T-384) | [Ping Gao] Isolation switch (double grounding) GW4-72.5DDW |
(T-385) | 72.5 kV, 5000 A, 50 kA (3 s), 125 kA (Peak) | (T-386) | Bushing current transformer | (T-387) | 5P30/0.2S/0.2 |
(T-388) | 2000-4000/1A/1A/1A | (T-389) | 15VA/5VA/15VA | (T-390) | Tank-type circuit breaker LW24-72.5 |
(T-391) | 72.5 kV, 4000 A,40 kA (3 s), 100 kA (Peak) | (T-392) | Bushing current transformer | (T-393) | TPY/TPY/5P30 |
(T-394) | 2000-4000/1 A/1 A/1 A | (T-395) | 15 VA/15 VA/15 VA | (T-396) | Heat-resistant aluminum alloy conductor 2× (NAHLGJQ-1440/120) |
Symbol Number | Symbol Name | Associated Text | Symbol Number | Symbol Name | Associated Text |
---|---|---|---|---|---|
(23) | NoSymbol | None | (5) | Transformer | [T-174] |
(16) | GRD | None | (31) | Switch | [T-268, T-390, T-391] |
(11) | Disconnector | [T-264, T-265, T-266, T-384, T-385] | (31) | CT | [T-250, T-251, T-253, T-254] |
(14) | Disconnector | None | (42) | CT | [T-245, T-246,T-247, T-248, T-249] |
(17) | Arrester | [T-169, T-172] | (43) | CT | [T-252,T-255, T-256, T-257, T-258, T-375] |
(24) | Arrester | [T-243, T-397] | (44) | CT | [T-267, T-386, T-387, T-388, T-389] |
(25) | Arrester | [T-383, T-263] | (45) | CT | [T-269, T-392, T-393, T-394, T-395] |
(39) | Arrester | [T-379] | (59) | CT | [T-259, T-260, T-261, T-262, T-376, T-377] |
Drawing Component Symbols | Number of Samples | Accuracy of Drawing Symbol Recognition under Different Algorithms | ||
---|---|---|---|---|
Traditional CNN | Faster R-CNN | Optimized Algorithm | ||
1 | 107 | 66.36 | 85.98 | 90.65 |
2 | 136 | 72.06 | 88.24 | 91.18 |
2 | 143 | 73.43 | 90.91 | 91.61 |
2 | 263 | 69.20 | 88.97 | 90.87 |
2 | 274 | 70.80 | 91.61 | 91.56 |
4 | 304 | 68.75 | 86.84 | 90.79 |
5 | 102 | 74.51 | 91.18 | 92.16 |
3 | 294 | 75.17 | 91.84 | 91.80 |
all | 1623 | 71.23 | 89.59 | 91.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, X. Optimizing Parameter Extraction in Grid Information Models Based on Improved Convolutional Neural Networks. Electronics 2024, 13, 2717. https://doi.org/10.3390/electronics13142717
Li X, Liu X. Optimizing Parameter Extraction in Grid Information Models Based on Improved Convolutional Neural Networks. Electronics. 2024; 13(14):2717. https://doi.org/10.3390/electronics13142717
Chicago/Turabian StyleLi, Xintong, and Xiangjun Liu. 2024. "Optimizing Parameter Extraction in Grid Information Models Based on Improved Convolutional Neural Networks" Electronics 13, no. 14: 2717. https://doi.org/10.3390/electronics13142717
APA StyleLi, X., & Liu, X. (2024). Optimizing Parameter Extraction in Grid Information Models Based on Improved Convolutional Neural Networks. Electronics, 13(14), 2717. https://doi.org/10.3390/electronics13142717