Influence of Post-Processing Techniques on Random Number Generation Using Chaotic Nanolasers
Abstract
1. Introduction
2. Theoretical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum Cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, F.; Liu, B. Random Number Generators for Large-Scale Parallel Monte Carlo Simulations on FPGA. J. Comput. Phys. 2018, 360, 93–103. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, C.; Chen, H. A Novel Color Image Encryption Algorithm Based on Hyperchaotic System and Permutation-Diffusion Architecture. Int. J. Bifurc. Chaos 2019, 29, 1950115. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, F.; Yu, F. A Robust Synchronization-Based Chaotic Secure Communication Scheme With Double-Layered and Multiple Hybrid Networks. IEEE Syst. J. 2020, 14, 2508–2519. [Google Scholar] [CrossRef]
- Yu, F.; Li, L.; Tang, Q.; Cai, S.; Song, Y.; Xu, Q. A Survey on True Random Number Generators Based on Chaos. Discret. Dyn. Nat. Soc. 2019, 2019, e2545123. [Google Scholar] [CrossRef]
- Peng, F.; Zhu, X.; Long, M. An ROI Privacy Protection Scheme for H.264 Video Based on FMO and Chaos. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1688–1699. [Google Scholar] [CrossRef]
- Datcu, O.; Macovei, C.; Hobincu, R. Chaos Based Cryptographic Pseudo-Random Number Generator Template with Dynamic State Change. Appl. Sci. 2020, 10, 451. [Google Scholar] [CrossRef]
- Gu, K.; Jia, W.; Wang, G.; Wen, S. Efficient and Secure Attribute-Based Signature for Monotone Predicates. Acta Inform. 2017, 54, 521–541. [Google Scholar] [CrossRef]
- Zhao, Q.; Yin, H. Gbits/s Physical-Layer Stream Ciphers Based on Chaotic Light. Optik 2013, 124, 2161–2164. [Google Scholar] [CrossRef]
- Abutaleb, M.M. A Novel True Random Number Generator Based on QCA Nanocomputing. Nano Commun. Netw. 2018, 17, 14–20. [Google Scholar] [CrossRef]
- Hasan, R.S.; Tawfeeq, S.K.; Mohammed, N.Q.; Khaleel, A.I. A True Random Number Generator Based on the Photon Arrival Time Registered in a Coincidence Window between Two Single-Photon Counting Modules. Chin. J. Phys. 2018, 56, 385–391. [Google Scholar] [CrossRef]
- Yu, F.; Wan, Q.; Jin, J.; Li, L.; He, B.; Liu, L.; Qian, S.; Huang, Y.; Cai, S.; Song, Y.; et al. Design and FPGA Implementation of a Pseudorandom Number Generator Based on a Four-Wing Memristive Hyperchaotic System and Bernoulli Map. IEEE Access 2019, 7, 181884–181898. [Google Scholar] [CrossRef]
- Rezk, A.A.; Madian, A.H.; Radwan, A.G.; Soliman, A.M. Reconfigurable Chaotic Pseudo Random Number Generator Based on FPGA. AEU-Int. J. Electron. Commun. 2019, 98, 174–180. [Google Scholar] [CrossRef]
- Li, N.; Kim, B.; Chizhevsky, V.N.; Locquet, A.; Bloch, M.; Citrin, D.S.; Pan, W. Two Approaches for Ultrafast Random Bit Generation Based on the Chaotic Dynamics of a Semiconductor Laser. Opt. Express OE 2014, 22, 6634–6646. [Google Scholar] [CrossRef] [PubMed]
- Bucci, M.; Germani, L.; Luzzi, R.; Trifiletti, A.; Varanonuovo, M. A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC. IEEE Trans. Comput. 2003, 52, 403–409. [Google Scholar] [CrossRef]
- Cao, L.; Min, L.; Zang, H. A Chaos-Based Pseudorandom Number Generator and Performance Analysis. In Proceedings of the 2009 International Conference on Computational Intelligence and Security, Beijing, China, 11–14 December 2009; Volume 1, pp. 494–498. [Google Scholar]
- Kanter, I.; Aviad, Y.; Reidler, I.; Cohen, E.; Rosenbluh, M. An Optical Ultrafast Random Bit Generator. Nat. Photon 2010, 4, 58–61. [Google Scholar] [CrossRef]
- Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S.; et al. Fast Physical Random Bit Generation with Chaotic Semiconductor Lasers. Nat. Photon 2008, 2, 728–732. [Google Scholar] [CrossRef]
- Reidler, I.; Aviad, Y.; Rosenbluh, M.; Kanter, I. Ultrahigh-Speed Random Number Generation Based on a Chaotic Semiconductor Laser. Phys. Rev. Lett. 2009, 103, 024102. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Li, S.-S.; Zhuang, J.-P.; Chan, S.-C. Random Bit Generation at Tunable Rates Using a Chaotic Semiconductor Laser under Distributed Feedback. Opt. Lett. OL 2015, 40, 3970–3973. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, B.; Wang, Y.; Han, Y.; Wen, A.; Hao, Y. 2.24-Tb/s Physical Random Bit Generation with Minimal Post-Processing Based on Chaotic Semiconductor Lasers Network. J. Light. Technol. JLT 2019, 37, 3987–3993. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, Y.; Ji, H. Sensing by Dynamics of Lasers with External Optical Feedback: A Review. Photonics 2022, 9, 450. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; He, H. Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser with Optical Feedback. IEEE Photonics Technol. Lett. 2008, 20, 1633–1635. [Google Scholar] [CrossRef]
- Komarov, A.; Komarov, K.; Niang, A.; Sanchez, F. Nature of Soliton Interaction in Fiber Lasers with Continuous External Optical Injection. Phys. Rev. A 2014, 89, 013833. [Google Scholar] [CrossRef]
- Yarunova, E.A.; Krents, A.A.; Molevich, N.E.; Anchikov, D.A. Suppression of Spatiotemporal Instabilities in Broad-Area Lasers with Pump Modulation by External Optical Injection. Bull. Lebedev Phys. Inst. 2021, 48, 55–58. [Google Scholar] [CrossRef]
- Tang, S.; Liu, J.M. Chaotic Pulsing and Quasi-Periodic Route to Chaos in a Semiconductor Laser with Delayed Opto-Electronic Feedback. IEEE J. Quantum Electron. 2001, 37, 329–336. [Google Scholar] [CrossRef]
- Priyadarshi, S.; Hong, Y.; Pierce, I.; Shore, K.K. Experimental Investigations of Time-Delay Signature Concealment in Chaotic External Cavity VCSELs Subject to Variable Optical Polarization Angle of Feedback. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1700707. [Google Scholar] [CrossRef]
- Wu, J.-G.; Wu, Z.-M.; Tang, X.; Lin, X.-D.; Deng, T.; Xia, G.-Q.; Feng, G.-Y. Simultaneous Generation of Two Sets of Time Delay Signature Eliminated Chaotic Signals by Using Mutually Coupled Semiconductor Lasers. IEEE Photon. Technol. Lett. 2011, 23, 759–761. [Google Scholar]
- Nguimdo, R.M.; Verschaffelt, G.; Danckaert, J.; Van Der Sande, G. Loss of Time-Delay Signature in Chaotic Semiconductor Ring Lasers. Opt. Lett. 2012, 37, 2541. [Google Scholar] [CrossRef]
- Mu, P.; He, P.; Li, N. Simultaneous Chaos Time-Delay Signature Cancellation and Bandwidth Enhancement in Cascade-Coupled Semiconductor Ring Lasers. IEEE Access 2019, 7, 11041–11048. [Google Scholar] [CrossRef]
- Lau, E.K.; Lakhani, A.; Tucker, R.S.; Wu, M.C. Enhanced Modulation Bandwidth of Nanocavity Light Emitting Devices. Opt. Express OE 2009, 17, 7790–7799. [Google Scholar] [CrossRef]
- Sattar, Z.A.; Shore, K.A. Dynamics of Nanolasers Subject to Optical Injection and Optical Feedback. In Proceedings of the Physics and Simulation of Optoelectronic Devices XXIV, San Francisco, CA, USA, 13–18 February 2016; SPIE: New York, NY, USA, 2016; Volume 9742, pp. 38–47. [Google Scholar]
- Abdul Sattar, Z.; Shore, K.A. External Optical Feedback Effects in Semiconductor Nanolasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 500–505. [Google Scholar] [CrossRef]
- Abdul Sattar, Z.; Shore, K.A. Phase Conjugate Feedback Effects in Nano-Lasers. IEEE J. Quantum Electron. 2016, 52, 1–8. [Google Scholar] [CrossRef]
- Abdul Sattar, Z.; Ali Kamel, N.; Shore, K.A. Optical Injection Effects in Nanolasers. IEEE J. Quantum Electron. 2016, 52, 1–8. [Google Scholar] [CrossRef]
- Han, H.; Shore, K.A. Analysis of High-Frequency Oscillations in Mutually-Coupled Nano-Lasers. Opt. Express OE 2018, 26, 10013–10022. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Shore, K.A. Dynamical Characteristics of Nano-Lasers Subject to Optical Injection and Phase Conjugate Feedback. IET Optoelectron. 2018, 12, 25–29. [Google Scholar] [CrossRef]
- Han, H.; Shore, K.A. Modulated Mutually Coupled Nano-Lasers. IEEE J. Quantum Electron. 2017, 53, 1–8. [Google Scholar] [CrossRef]
- Qu, Y.; Xiang, S.; Wang, Y.; Lin, L.; Wen, A.J.; Hao, Y. Concealment of Time Delay Signature of Chaotic Semiconductor Nanolasers With Double Chaotic Optical Injections. IEEE J. Quantum Electron. 2019, 55, 1–7. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, G.; Liu, X.; Hu, G.; Wang, K.; Mu, P. Dynamics and Concealment of Time-Delay Signature in Mutually Coupled Nano-Laser Chaotic Systems. Photonics 2023, 10, 1196. [Google Scholar] [CrossRef]
- Zhang, X.; Mu, P.; Guo, G.; Liu, X.; He, P. Bidirectional Chaotic Synchronization Communication of Closed-Loop Mutually Coupled Nano-Lasers. Electronics 2024, 13, 239. [Google Scholar] [CrossRef]
- Liu, G.; Mu, P.; Wang, K.; Guo, G.; Liu, X.; He, P. Random Numbers Generated Based on Dual-Channel Chaotic Light. Electronics 2024, 13, 1603. [Google Scholar] [CrossRef]
- Liu, G.P.; Mu, P.H.; Guo, G.; Liu, X.T.; Hu, G.S. High-Quality Random Bit Generation Based on a Cascade-Coupled Nano-Laser System. Laser Phys. Lett. 2024, 21, 035206. [Google Scholar] [CrossRef]
- Xue, C.; Jiang, N.; Lv, Y.; Wang, C.; Li, G.; Lin, S.; Qiu, K. Security-Enhanced Chaos Communication with Time-Delay Signature Suppression and Phase Encryption. Opt. Lett., OL 2016, 41, 3690–3693. [Google Scholar] [CrossRef]
- Xiang, S.; Wen, A.; Pan, W.; Lin, L.; Zhang, H.; Zhang, H.; Guo, X.; Li, J. Suppression of Chaos Time Delay Signature in a Ring Network Consisting of Three Semiconductor Lasers Coupled with Heterogeneous Delays. J. Light. Technol. 2016, 34, 4221–4227. [Google Scholar] [CrossRef]
- Zhao, A.; Jiang, N.; Liu, S.; Xue, C.; Qiu, K. Wideband Time Delay Signature-Suppressed Chaos Generation Using Self-Phase-Modulated Feedback Semiconductor Laser Cascaded with Dispersive Component. J. Light. Technol. 2019, 37, 5132–5139. [Google Scholar] [CrossRef]
- Gottwald, G.A.; Melbourne, I. On the Implementation of the 0–1 Test for Chaos. SIAM J. Appl. Dyn. Syst. 2009, 8, 129–145. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
Wavelength of MNL | ||
Cavity Length | ||
Volume of Active Region | ||
Mode Confinement | 0.645 | |
Differential Gain | ||
Photon Lifetime | ||
Feedback Delay | ||
Carrier Lifetime | ||
Transparency Carrier Density | ||
Gain Saturation Factor | ||
Refractive Index | 3.4 | |
Linewidth Enhancement Factor | 5 | |
External Facet Power Reflectivity | 0.95 | |
Laser Facet Reflectivity | 0.85 | |
Speed of Light in Free Space | ||
Injection Parameter | ||
Feedback Coupling Fraction |
Statistical Test | In Scheme 1, Four LSBs Are Retained. | In Scheme 2, Five LSBs Are Retained. | ||||
---|---|---|---|---|---|---|
p-Value | Proportion | Result | p-Value | Proportion | Result | |
Frequency | 0.352107 | 0.994 | Success | 0.777265 | 0.987 | Success |
Block frequency | 0.570792 | 0.990 | Success | 0.308561 | 0.990 | Success |
Cumulative sums | 0.635037 | 0.992 | Success | 0.695200 | 0.987 | Success |
Runs | 0.591409 | 0.986 | Success | 0.635037 | 0.994 | Success |
Longest runs | 0.428095 | 0.992 | Success | 0.915317 | 0.989 | Success |
Rank | 0.705466 | 0.993 | Success | 0.781106 | 0.994 | Success |
Fast Fourier transform | 0.011875 | 0.993 | Success | 0.492436 | 0.990 | Success |
Non-overlapping template | 0.664168 | 0.982 | Success | 0.007975 | 0.982 | Success |
Overlapping template | 0.558502 | 0.988 | Success | 0.326749 | 0.994 | Success |
Universal | 0.317565 | 0.989 | Success | 0.307077 | 0.986 | Success |
Approximate entropy | 0.542228 | 0.991 | Success | 0.363593 | 0.985 | Success |
Random excursions | 0.191505 | 0.984 | Success | 0.012181 | 0.982 | Success |
Random excursions variant | 0.278122 | 0.986 | Success | 0.025588 | 0.982 | Success |
Serial | 0.595549 | 0.990 | Success | 0.184549 | 0.984 | Success |
Linear complexity | 0.469232 | 0.989 | Success | 0.373625 | 0.991 | Success |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Liu, G.; Li, R.; Mu, P. Influence of Post-Processing Techniques on Random Number Generation Using Chaotic Nanolasers. Electronics 2024, 13, 2712. https://doi.org/10.3390/electronics13142712
Zhao J, Liu G, Li R, Mu P. Influence of Post-Processing Techniques on Random Number Generation Using Chaotic Nanolasers. Electronics. 2024; 13(14):2712. https://doi.org/10.3390/electronics13142712
Chicago/Turabian StyleZhao, Jing, Guopeng Liu, Rongkang Li, and Penghua Mu. 2024. "Influence of Post-Processing Techniques on Random Number Generation Using Chaotic Nanolasers" Electronics 13, no. 14: 2712. https://doi.org/10.3390/electronics13142712
APA StyleZhao, J., Liu, G., Li, R., & Mu, P. (2024). Influence of Post-Processing Techniques on Random Number Generation Using Chaotic Nanolasers. Electronics, 13(14), 2712. https://doi.org/10.3390/electronics13142712