THz Wave Power Enhancement Using a Microstrip Line-Based Combiner Integrated with Arrayed UTC-PDs
Abstract
1. Introduction
2. A Uni-Travelling Carrier Photodiode (UTC-PD)
3. Continuous THz Wave Generation by Photomixing with a UTC-PD
4. Device Design and Fabrication
5. Device Characterization
5.1. Experimental Setup
5.2. Combined Photocurrent Coherency
5.3. Output Linearity and Saturation Due to Space Charge Effect
6. Current Combining for Enhanced Radiated THz Power
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, H.-J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 105–117. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G Wireless communications: Vision and potential techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Heydari, P.; Wang, H.; Mohammadnezhad, H.; Nazari, P. Energy efficient 100+ GHz transceivers enabling beyond-5G wireless communications. IEEE Wirel. Commun. 2021, 28, 144–151. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.-S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef]
- Khamaisi, B.; Jameson, S.; Socher, E. 0.61 THz radiating source with on-chip antenna on 65nm CMOS. In Proceedings of the 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 October 2016. [Google Scholar] [CrossRef]
- Khamaisi, B.; Jameson, S.; Socher, E. A 0.58–0.61 THz single on-chip antenna transceiver based on active X30 LO chain on 65nm CMOS. In Proceedings of the 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 October 2016. [Google Scholar] [CrossRef]
- Aghasi, H.; Cathelin, A.; Afshari, E. A 0.92-thz SiGe power radiator based on a nonlinear theory for harmonic generation. IEEE J. Solid-State Circuits 2017, 52, 406–422. [Google Scholar] [CrossRef]
- Hu, Z.; Kaynak, M.; Han, R. High-power radiation at 1 THz in silicon: A fully scalable array using a multi-functional radiating mesh structure. IEEE J. Solid-State Circuits 2018, 53, 1313–1327. [Google Scholar] [CrossRef]
- Urteaga, M.; Pierson, R.; Rowell, P.; Jain, V.; Lobisser, E.; Rodwell, M.J.W. 130nm InP DHBTs with ft > 0.52 thz and f max > 1.1 THz. In Proceedings of the 69th Device Research Conference, Santa Barbara, CA, USA, 20–22 June 2011. [Google Scholar] [CrossRef]
- Heinemann, B.; Rucker, H.; Barth, R.; Barwolf, F.; Drews, J.; Fischer, G.G.; Fox, A.; Fursenko, O.; Grabolla, T.; Herzel, F.; et al. SiGe HBT with fx/fmax of 505 GHz/720 GHz. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar] [CrossRef]
- Leuther, A.; Tessmann, A.; Doria, P.; Ohlrogge, M.; Seelmann-Eggebert, M.; Hermann, M.; Schlechtweg, M.; Ambacher, O. 20 NM metamorphic HEMT WITH 660 GHZ FT. In Proceedings of the 9th European Microwave Integrated Circuit Conference, Rome, Italy, 6–7 October 2014. [Google Scholar]
- Mei, X.; Yoshida, W.; Lange, M.; Lee, J.; Zhou, J.; Liu, P.-H.; Leong, K.; Zamora, A.; Padilla, J.; Sarkozy, S.; et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron. Device Lett. 2015, 36, 327–329. [Google Scholar] [CrossRef]
- Deal, W.; Leong, K.; Zamora, A.; Radisic, V.; Mei, X.B. Recent progress in scaling InP HEMT TMIC technology to 850 GHz. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014. [Google Scholar] [CrossRef]
- Arzi, K.; Suzuki, S.; Rennings, A.; Erni, D.; Weimann, N.; Asada, M.; Prost, W. Subharmonic injection locking for phase and frequency control of RTD-based THz oscillator. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 221–224. [Google Scholar] [CrossRef]
- Maekawa, T.; Kanaya, H.; Suzuki, S.; Asada, M. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Exp. 2016, 9, 024101. [Google Scholar] [CrossRef]
- Kou, W.; Liang, S.; Zhou, H.; Dong, Y.; Gong, S.; Yang, Z.; Zeng, H. A review of Terahertz sources based on Planar Schottky Diodes. Chin. J. Electron. 2022, 31, 467–487. [Google Scholar] [CrossRef]
- Lin, C.-I.; Rodriguez-Gironés, M.; Simon, A.; Zhang, J.; Piironen, P.; Möttönen, V.; Louhi, J.; Hartnage, H.; Räisänen, A.V. Anti-parallel planar Schottky diodes for subharmonically-pumped 220 GHz/mixer. In Proceedings of the 10th International Symposium on Space Terahertz Technology, Charlottesville, VA, USA, 16–18 March 1999. [Google Scholar]
- Bishop, W.L.; McKinney, K.; Mattauch, R.J.; Crowe, T.W.; Green, G. A novel whiskerless Schottky diode for millimeter and submillimeter wave application. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Palo Alto, CA, USA, 9–11 June 1987. [Google Scholar] [CrossRef]
- Takada, T.; Ohmori, M. Frequency triplers and quadruplers with GaAs Schottky-barrier diodes at 450 and 600 GHz. IEEE Trans. Microw. Theory Tech. 1979, 27, 519–523. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz band: The last last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 2019, 1, 1–32. [Google Scholar] [CrossRef]
- Kaushik, S.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Wakatsuki, A.; Muramoto, Y. Development of Terahertz wave Photomixer Module Using a Uni-traveling-carrier Photodiode. Feature Artic. Imag. Sens. Tech. Saf. Secur. 2012, 10, 1–7. [Google Scholar]
- Ishibashi, T.; Shimizu, N.; Kodama, S.; Ito, H.; Nagatsuma, T.; Furuta, T. Uni-Traveling-Carrier Photodiodes. Ultrafast Electron. Optoelectron. 1997, 13, UC3. [Google Scholar] [CrossRef]
- Ishibashi, T.; Ito, H. Uni-Traveling Carrier Photodiodes: Development and Prospects. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–6. [Google Scholar] [CrossRef]
- Ishibashi, T.; Ito, H. Uni-traveling-carrier photodiodes. J. Appl. Phys. 2020, 127, 031101. [Google Scholar] [CrossRef]
- Ishibashi, T.; Muramoto, Y.; Yoshimatsu, T.; Ito, H. Unitraveling-Carrier Photodiodes for Terahertz Applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 79–88. [Google Scholar] [CrossRef]
- Dong, X.; Liu, K.; Huang, Y.; Duan, X.; Wang, Q.; Ren, X. Design of High-Speed UTC-PD with Optimization of Its Electron Transit Performance and Parasitic Capacitance. IEEE Photonics J. 2023, 15, 6800309. [Google Scholar] [CrossRef]
- Ito, H.; Nagatsuma, T.; Hirata, A.; Minotani, T.; Sasaki, A.; Hirota, Y.; Ishibashi, T. High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes. IEE Proc. Optoelectron. 2003, 150, 138–142. [Google Scholar] [CrossRef]
- Renaud, C.C.; Natrella, M.; Graham, C.; Seddon, J.; Van Dijk, F.; Seeds, A.J. Antenna Integrated THz Uni-Traveling Carrier Photodiodes. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Che, M.; Kondo, K.; Kanaya, H.; Kato, K. Arrayed photomixers for THz beam-combining and beam-steering. J. Lightw. Technol. 2022, 40, 6657–6665. [Google Scholar] [CrossRef]
- Koyama, Y.; Kitazawa, Y.; Yukimasa, K.; Uchida, T.; Yoshioka, T.; Fujimoto, K.; Sato, T.; Iba, J.; Sakurai, K.; Ichikawa, T. A high-power terahertz source over 10 mW at 0.45 THz using an active antenna array with integrated patch antennas and resonant-tunneling diodes. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 510–519. [Google Scholar] [CrossRef]
- Sumer, M.; Matthias, S.; Thomas, H.; Jonas, T.; Sebastian, D.; Marcel, G.; Peng, L.; Jose, E.; Stefan, M.; Ullrich, P.; et al. Novel 3-D multilayer terahertz packaging technology for integrating photodiodes arrays and rectangular waveguide power combiners. IEEE Trans. Microw. Theory Tech. 2020, 68, 4611–4619. [Google Scholar] [CrossRef]
- Song, H.-J.; Ajito, K.; Muramoto, Y.; Wakatsuki, A.; Nagatsuma, T.; Kukutsu, N. Uni-travelling-Carrier photodiode module generating 300 GHz power greater than 1mW. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 363–365. [Google Scholar] [CrossRef]
- Fu, Y.; Pan, H.; Li, Z.; Campbell, J. High linearity photodiode array with monolithically integrated Wilkinson power combiner. In Proceedings of the 2010 IEEE International Topical Meeting on Microwave Photonics, Montreal, QC, Canada, 5–9 October 2010. [Google Scholar] [CrossRef]
- Naftaly, M.; Molloy, J.F.; Magnusson, B.; Andreev, Y.M.; Lanskii, G.V. Silicon carbide—A high-transparency nonlinear material for THz applications. Opt. Express 2016, 24, 2590–2595. [Google Scholar] [CrossRef]
- Xiyuan, L.; Jonathan, Y.L.; Steven, R.; Qiang, L. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express 2014, 22, 30826–30832. [Google Scholar]
- Xu, J.; Zhang, X.; Kishk, A. InGaAs/InP evanescently coupled one-sided junction waveguide photodiode design. Opt. Quant Electron. 2020, 52, 266. [Google Scholar] [CrossRef]
- Kato, K. Photonics-Assisted Terahertz-Wave Beam Steering and Its Application in Secured Wireless Communication. Photonics 2022, 9, 9. [Google Scholar] [CrossRef]
- Safian, R.; Ghazi, G.; Mohammadian, N. Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Opt. Eng. 2019, 58, 110901. [Google Scholar] [CrossRef]
- Ishibashi, T.; Furuta, T.; Fushimi, H.; Kodama, S.; Ito, H.; Nagatsuma, T.; Shimizu, N.; Miyamoto, Y. InP/InGaAs uni-travaling-carrier photodiodes. IEICE Trans. Electron. 2000, E83-C, 938–949. [Google Scholar]
- Ito, H.; Shibata, N.; Nagatsuma, T.; Ishibashi, T. Terahertz-wave detector on silicon carbide platform. Appl. Phys. Express 2022, 15, 026501. [Google Scholar] [CrossRef]
- Ssali, H.; Che, M.; Kato, K. Performance Analysis of a Wilkinson Power Combiner-Fed Patch Antenna for 300-GHz Arrayed Photomixers. In Proceedings of the 10th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), Alexandria, Egypt, 19–20 December 2022. [Google Scholar] [CrossRef]
- Ito, H.; Ishibashi, T. InP/InGaAs fermi-level managed barrier diode for broadband and low-noise terahertz-wave detection. Jpn. J. Appl. Phys. 2016, 56, 014101. [Google Scholar] [CrossRef]
- Ito, H.; Ishibashi, T. Novel Fermi-level managed barrier diode for broadband and sensitive terahertz-wave detection. In Proceedings of the 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015. [Google Scholar] [CrossRef]
- Ito, H.; Ishibashi, T. Fermi-level managed barrier diode for broadband and low-noise terahertz-wave detection. Electron. Lett. 2015, 51, 1440–1442. [Google Scholar] [CrossRef]
- Matsuo, Y.; Che, M.; Kanaya, H.; Kato, K. THz-Wave Power Multiplication by Parallel-Connection UTC-PDs. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020. [Google Scholar] [CrossRef]
- Ssali, H.; Che, M.; Kato, K. Coupled Line Wilkinson Combiner-Antenna Integrated Design for 300-GHz Arrayed UTC-PDs. In Proceedings of the 2023 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 2–6 July 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ssali, H.; Kamiura, Y.; Doi, R.; Agemori, H.; Che, M.; Mikami, Y.; Kato, K. THz Wave Power Enhancement Using a Microstrip Line-Based Combiner Integrated with Arrayed UTC-PDs. Electronics 2024, 13, 2661. https://doi.org/10.3390/electronics13132661
Ssali H, Kamiura Y, Doi R, Agemori H, Che M, Mikami Y, Kato K. THz Wave Power Enhancement Using a Microstrip Line-Based Combiner Integrated with Arrayed UTC-PDs. Electronics. 2024; 13(13):2661. https://doi.org/10.3390/electronics13132661
Chicago/Turabian StyleSsali, Hussein, Yoshiki Kamiura, Ryo Doi, Hiroki Agemori, Ming Che, Yuya Mikami, and Kazutoshi Kato. 2024. "THz Wave Power Enhancement Using a Microstrip Line-Based Combiner Integrated with Arrayed UTC-PDs" Electronics 13, no. 13: 2661. https://doi.org/10.3390/electronics13132661
APA StyleSsali, H., Kamiura, Y., Doi, R., Agemori, H., Che, M., Mikami, Y., & Kato, K. (2024). THz Wave Power Enhancement Using a Microstrip Line-Based Combiner Integrated with Arrayed UTC-PDs. Electronics, 13(13), 2661. https://doi.org/10.3390/electronics13132661