Multi-Height and Heterogeneous Sensor Fusion Discriminant with LSTM for Weak Fire Signal Detection in Large Spaces with High Ceilings
Abstract
:1. Introduction
2. Related Works
2.1. Recurrent Neural Network
2.2. Long Short-Term Memory Networks
3. Proposed Method
3.1. Framework
3.2. Temporal Fusion Layer
3.3. Sensor Fusion Layer
3.4. Height Fusion Layer
4. Experiments
4.1. Production of Datasets
4.2. Implementation Details
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kodur, V.; Kumar, P.; Rafi, M.M. Fire Hazard in Buildings: Review, Assessment and Strategies for Improving Fire Safety. PSU Res. Rev. 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Zhang, T. Influence of Air-Conditioning Systems on Buoyancy Driven Air Infiltration in Large Space Buildings: A Case Study of a Railway Station. Energy Build. 2020, 210, 109781. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, J.; Du-Ikonen, L.; Zhong, W. An Infiltration Load Calculation Model of Large-Space Buildings Based on the Grand Canonical Ensemble Theory. Energy 2023, 275, 127331. [Google Scholar] [CrossRef]
- Fafet, C.; Mulolli Zajmi, E. Qualitative Fire Vulnerability Assessments for Museums and Their Collections: A Case Study from Kosovo. Fire 2021, 4, 11. [Google Scholar] [CrossRef]
- Hsu, M.-W.; Wu, C.-M.; Chen, Y.-K.; Lee, S.-K. A Numerical Study of the Heat Release Rate of Exhibition Kiosks in a Fire. Sens. Mater. 2017, 29, 453–460. [Google Scholar] [CrossRef]
- Wan, Z.; Zhou, T.; Tang, Z.; Pan, Y.; Zhang, L. Smart Design for Evacuation Signage Layout for Exhibition Halls in Exhibition Buildings Based on Visibility. ISPRS Int. J. Geo-Inf. 2021, 10, 806. [Google Scholar] [CrossRef]
- Hou, J.; Qian, J.; Zhang, W.; Zhao, Z.; Pan, P. Fire Detection Algorithms for Video Images of Large Space Structures. Multimed. Tools Appl. 2011, 52, 45–63. [Google Scholar] [CrossRef]
- Wong, A.K.K.; Fong, N.K. Experimental Study of Video Fire Detection and Its Applications. Procedia Eng. 2014, 71, 316–327. [Google Scholar] [CrossRef]
- Khan, F.; Xu, Z.; Sun, J.; Khan, F.M.; Ahmed, A.; Zhao, Y. Recent Advances in Sensors for Fire Detection. Sensors 2022, 22, 3310. [Google Scholar] [CrossRef]
- Kuffner, W.; Hadjisophocleous, G. Method of Determining Smoke Detector Spacing in High Ceiling Applications. Fire Technol. 2014, 50, 723–744. [Google Scholar] [CrossRef]
- Višak, T.; Baleta, J.; Virag, Z.; Vujanović, M.; Wang, J.; Qi, F. Multi Objective Optimization of Aspirating Smoke Detector Sampling Pipeline. Optim. Eng. 2021, 22, 121–140. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, Y.; Cheng, P. Study on Calibration Method of Filter for Linear Beam Smoke Detector. In Proceedings of the AOPC 2022: Optoelectronics and Nanophotonics, Beijing, China, 18 December 2022; Volume 12556, p. 125560M. [Google Scholar]
- Li, B.; Xu, F.; Li, X.; Yu, C.; Zhang, X. Early Stage Fire Detection System Based on Shallow Guide Deep Network. Fire Technol. 2024, 60, 1803–1821. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image Fire Detection Algorithms Based on Convolutional Neural Networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Rahmatov, N.; Paul, A.; Saeed, F.; Seo, H. Realtime Fire Detection Using CNN and Search Space Navigation. J. Real-Time Image Proc. 2021, 18, 1331–1340. [Google Scholar] [CrossRef]
- Avila-Avendano, C.; Pintor-Monroy, M.I.; Ortiz-Conde, A.; Caraveo-Frescas, J.A.; Quevedo-Lopez, M.A. Deep UV Sensors Enabling Solar-Blind Flame Detectors for Large-Area Applications. IEEE Sens. J. 2021, 21, 14815–14821. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, E.; Bie, Y. Simulation Investigation on the Smoke Spread Process in the Large-Space Building with Various Height. Case Stud. Therm. Eng. 2020, 18, 100594. [Google Scholar] [CrossRef]
- Wang, R.; Lan, X.; Xu, L. Smoke Spread Process under Different Heights Based on Numerical Simulation. Case Stud. Therm. Eng. 2020, 21, 100710. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Song, L. Numerical Research on the Smoke Spread Process of Thin-Tall Atrium Space under Various Ceiling Height. Case Stud. Therm. Eng. 2021, 25, 100996. [Google Scholar] [CrossRef]
- Drysdale, D. An Introduction to Fire Dynamics, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 978-0-470-31903-1. [Google Scholar]
- Zhang, Y.; Liu, Z.; Lin, Y.; Fu, M.; Chen, Y. New Approaches to Determine the Interface Height of Fire Smoke Based on a Three-Layer Zone Model and Its Verification in Large Confined Space. Fire Mater. 2020, 44, 130–138. [Google Scholar] [CrossRef]
- Zhang, G.; Li, H.; Zhu, G.; Li, J. Temperature Fields for Fire Resistance Analysis of Structures Exposed to Natural Fires in Large Space Buildings. Struct. Des. Tall Spec. Build. 2020, 29, e1708. [Google Scholar] [CrossRef]
- Cao, X.; Wu, K.; Geng, X.; Guan, Q. Field Detection of Indoor Fire Threat Situation Based on LSTM-Kriging Network. J. Build. Eng. 2024, 84, 108686. [Google Scholar] [CrossRef]
- Liu, P.; Xiang, P.; Lu, D. A New Multi-Sensor Fire Detection Method Based on LSTM Networks with Environmental Information Fusion. Neural Comput. Appl. 2023, 35, 25275–25289. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.; Paliwal, K.K. Bidirectional Recurrent Neural Networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Liu, B.; Lane, I. Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling. Proc. Interspeech 2016, 685–689. [Google Scholar] [CrossRef]
- NFPA (The National Fire Protection Association). National Fire Alarm and Signaling Code; NFPA 72; NFPA: Quincy, MA, USA, 2022. [Google Scholar]
- Ministry of Housing and Urban-Rural Development of People’s Republic of China. Code for Design of Automatic fire Alarm System; GB 50116; Planning Press: Beijing, China, 2013.
- ISO 7240-9; ISO/TC 21/SC 3. Fire Detection and Alarm Systems—Part 9: Test Fires for Fire Detectors. ISO (International Organization for Standardization): Sydney, Australia, 2022.
- Kingma, D.P.; Adam, L.J.B. A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7 May 2015. [Google Scholar]
- ISO 7240-5; ISO/TC 21/SC 3. Fire Detection and Fire Alarm Systems—Part 5: Point Type Heat Detectors. ISO (International Organization for Standardization): Sydney, Australia, 2022.
Models | Accuracy (%) of 12.5 m | Accuracy (%) of 15.5 m | Accuracy (%) of 18.5 m | Average Accuracy (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | ||
RF | 83.72 | 84.36 | 69.79 | 86.28 | 88.4 | 83.19 | 92.34 | 83.19 | 73.62 | 77.45 | 82.23 | 90.32 | 81.28 | 91.49 | 82.77 | 76.38 | 80.11 | 87.55 | 85.21 | 84.04 | 88.51 | 83.44 |
SVM | 82.45 | 82.66 | 73.19 | 82.66 | 85.53 | 83.3 | 83.3 | 82.34 | 72.87 | 75.96 | 81.49 | 80.74 | 82.13 | 82.13 | 80.32 | 77.45 | 82.13 | 86.6 | 86.28 | 82.45 | 87.66 | 81.6 |
LR | 80.21 | 80.43 | 72.87 | 80.43 | 80.96 | 83.09 | 79.57 | 80.21 | 72.87 | 72.87 | 80.64 | 72.87 | 82.02 | 82.02 | 80.21 | 77.02 | 72.13 | 82.45 | 76.28 | 82.02 | 86.49 | 78.94 |
FCNN | 82.23 | 83.51 | 72.55 | 85.43 | 87.55 | 83.4 | 90.32 | 80.21 | 73.3 | 77.98 | 83.72 | 86.28 | 82.98 | 88.19 | 80.21 | 76.17 | 81.6 | 85.53 | 85.11 | 84.68 | 87.55 | 82.79 |
LSTM | 80.52 | 74.94 | 84 | 82.57 | 80.36 | 85.5 | 83.52 | 80.52 | 74.94 | 84.04 | 82.47 | 82.38 | 85.6 | 83.49 | 80.52 | 74.94 | 83.94 | 82.5 | 81.26 | 85.57 | 84.39 | 81.8 |
1D CNN | 80.25 | 79.15 | 84.12 | 86.27 | 85.4 | 84.9 | 87.5 | 80.25 | 75.23 | 83.71 | 86.72 | 85.04 | 83.3 | 87.36 | 80.25 | 78.97 | 83.99 | 86.54 | 85.17 | 85.22 | 87.5 | 83.66 |
MLSTM | 80.52 | 74.94 | 84.13 | 82.54 | 85.38 | 85.57 | 86.49 | 80.52 | 77.87 | 84.2 | 82.54 | 74.94 | 85.66 | 87.2 | 80.52 | 78.61 | 84.16 | 82.41 | 85.06 | 85.7 | 86.14 | 82.62 |
EIFLSTM | 83.47 | 85.94 | 84.23 | 86.92 | 88.46 | 86.52 | 93.21 | 84.98 | 79.94 | 84.74 | 86.82 | 87.97 | 86.67 | 92.2 | 83.34 | 80.94 | 84.49 | 88.21 | 86.87 | 86.28 | 88.92 | 86.24 |
Ours | 84.03 | 84.23 | 84.18 | 89.15 | 91.65 | 89.02 | 94.06 | 84.33 | 80.43 | 84.16 | 89.19 | 90.04 | 89.76 | 93.26 | 82.97 | 80.76 | 84.43 | 89.75 | 89.43 | 88.12 | 91.04 | 87.33 |
Models | Accuracy (%) of 12.5 m, 15.5 m | Accuracy (%) of 12.5 m, 18.5 m | Accuracy (%) of 15.5 m, 18.5 m | Average Accuracy (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | ||
RF | 83.51 | 87.23 | 82.34 | 91.91 | 96.49 | 85.11 | 97.23 | 83.83 | 87.55 | 82.98 | 91.7 | 96.28 | 87.77 | 97.66 | 84.26 | 81.81 | 85.53 | 89.68 | 96.49 | 87.23 | 95.96 | 89.17 |
SVM | 82.34 | 85.64 | 75.96 | 87.34 | 91.38 | 83.62 | 88.83 | 82.34 | 85.64 | 84.15 | 86.81 | 90.64 | 83.62 | 89.04 | 82.13 | 77.45 | 82.02 | 86.38 | 89.04 | 82.87 | 87.77 | 85 |
LR | 81.91 | 81.38 | 73.62 | 81.06 | 81.49 | 83.09 | 80.64 | 82.45 | 83.72 | 77.34 | 86.81 | 83.62 | 83.3 | 85.74 | 81.91 | 76.91 | 76.91 | 86.17 | 81.7 | 82.45 | 87.02 | 81.87 |
FCNN | 82.45 | 87.77 | 82.66 | 88.94 | 93.51 | 85.74 | 94.47 | 82.55 | 85.11 | 85.96 | 86.06 | 92.55 | 86.7 | 94.68 | 82.02 | 78.09 | 85.85 | 87.02 | 94.04 | 88.4 | 94.47 | 87.57 |
LSTM | 80.52 | 83.97 | 79.47 | 84.99 | 85.12 | 84.61 | 85.57 | 83.59 | 85.57 | 85.89 | 86.81 | 87.99 | 87.29 | 88.92 | 80.52 | 78.26 | 85.34 | 83.05 | 87.87 | 85.66 | 84.48 | 84.55 |
1D CNN | 83.53 | 83.35 | 80.34 | 88.55 | 87.59 | 84.31 | 90.92 | 83.35 | 85.58 | 84.44 | 88.09 | 90.19 | 86.41 | 90.37 | 82.89 | 78.83 | 85.17 | 86.59 | 89.6 | 85.36 | 89.32 | 85.94 |
MLSTM | 83.49 | 83.72 | 81.29 | 83.97 | 84.61 | 84.61 | 85.31 | 83.14 | 85.09 | 86.78 | 87.1 | 87.36 | 87.29 | 86.85 | 80.52 | 78.74 | 85.47 | 84.2 | 88.86 | 86.24 | 88.7 | 84.92 |
EIFLSTM | 83.99 | 89.21 | 83.32 | 92.06 | 96.65 | 85.12 | 97.65 | 84.42 | 86.5 | 87.81 | 92.79 | 97 | 87.79 | 98.52 | 84.79 | 82.94 | 86.89 | 89.99 | 96.97 | 88.79 | 96.49 | 89.98 |
Ours | 84.56 | 90.78 | 84.57 | 93.29 | 97.47 | 87.43 | 98.14 | 86.19 | 88.26 | 89.13 | 93.82 | 98.15 | 89.93 | 98.71 | 86.16 | 83.2 | 88.47 | 92.87 | 97.98 | 91.67 | 98.15 | 91.38 |
Models | Accuracy (%) of 12.5 m | Accuracy (%) of 15.5 m | Accuracy (%) of 18.5 m | Average Accuracy (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | ||
RF | 67.91 | 51.38 | 68.86 | 62.29 | 55.99 | 69.14 | 58.48 | 67.56 | 58.83 | 50.12 | 65.61 | 36.84 | 67.88 | 35.69 | 67.56 | 59.38 | 51.17 | 27.54 | 28.77 | 50.47 | 28.28 | 53.8 |
SVM | 67.7 | 50.51 | 68.37 | 67.88 | 49.35 | 68.4 | 68.4 | 67.56 | 68.05 | 67.32 | 67.81 | 42.01 | 68.12 | 68.16 | 67.84 | 53.58 | 59.25 | 28.28 | 28.1 | 71.41 | 28.17 | 58.39 |
LR | 71.58 | 51.14 | 68.16 | 63.37 | 51.07 | 68.37 | 60.43 | 71.72 | 68.05 | 68.3 | 71.37 | 68.26 | 68.19 | 68.19 | 71.72 | 50.23 | 71.41 | 71.23 | 54.74 | 68.89 | 45.4 | 64.37 |
FCNN | 67.63 | 50.19 | 69.98 | 62.25 | 59.35 | 68.4 | 60.82 | 71.72 | 57.99 | 50.47 | 66.97 | 33.45 | 69.98 | 33.34 | 71.72 | 32.96 | 56.52 | 30.86 | 28.7 | 57.92 | 30.48 | 53.89 |
LSTM | 71.72 | 68.05 | 66.76 | 72.81 | 69.70 | 66.93 | 67.6 | 71.72 | 68.05 | 66.45 | 73.23 | 66.45 | 66.86 | 68.93 | 71.72 | 68.05 | 65.82 | 73.05 | 70.43 | 66.76 | 68.54 | 69.03 |
1D CNN | 71.72 | 68.93 | 65.29 | 71.13 | 66.41 | 66.31 | 67.81 | 71.72 | 68.05 | 64.7 | 72.14 | 66.76 | 67.84 | 68.93 | 71.72 | 68.47 | 65.82 | 71.9 | 66.03 | 66.97 | 67.6 | 68.39 |
MLSTM | 71.72 | 68.89 | 65.64 | 73.19 | 66.9 | 65.36 | 69.87 | 71.72 | 68.16 | 64.17 | 73.05 | 68.05 | 64.63 | 67.35 | 71.72 | 68.26 | 66.66 | 72.04 | 65.33 | 62.67 | 71.76 | 68.44 |
EIFLSTM | 73.76 | 70.82 | 71.42 | 73.95 | 70.1 | 71.72 | 70.43 | 72.02 | 69.91 | 69.6 | 73.95 | 71.02 | 70.1 | 71.72 | 72.2 | 69.74 | 72 | 72.72 | 71.37 | 72.06 | 71.85 | 71.55 |
Ours | 76.12 | 74.04 | 74.03 | 76.43 | 75.85 | 75.19 | 74.76 | 73.97 | 72.85 | 73.28 | 76.05 | 74.14 | 75.8 | 74.82 | 75.39 | 73.97 | 75.73 | 75.3 | 75.41 | 76.6 | 75.88 | 75.29 |
Models | Accuracy (%) of 12.5 m, 15.5 m | Accuracy (%) of 12.5 m, 18.5 m | Accuracy (%) of 15.5 m, 18.5 m | Average Accuracy (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | T | S | P | TS | SP | TP | TSP | ||
RF | 67.63 | 53.48 | 49.11 | 61.45 | 43.31 | 55.54 | 45.3 | 67.81 | 58.97 | 62.95 | 66.52 | 64.56 | 63.47 | 66.55 | 67.25 | 53.2 | 58.02 | 60.05 | 39.67 | 62.32 | 51.97 | 58.05 |
SVM | 67.67 | 51 | 67.32 | 67.74 | 41.38 | 68.37 | 66.83 | 67.7 | 51.17 | 67.49 | 67.77 | 65.71 | 69.17 | 69.56 | 67.67 | 68.23 | 65.78 | 67.74 | 54.39 | 68.23 | 68.37 | 64.25 |
LR | 67.84 | 52.46 | 67.53 | 66.59 | 53.06 | 68.44 | 63.58 | 66.69 | 60.57 | 66.31 | 66.13 | 56.66 | 69.87 | 64.14 | 66.38 | 67.21 | 71.93 | 66.45 | 69.98 | 70.01 | 68.47 | 65.25 |
FCNN | 67.7 | 52.36 | 46.52 | 67.6 | 51.49 | 56.52 | 47.61 | 66.97 | 60.22 | 64.52 | 67.14 | 64.87 | 62.15 | 67.14 | 66.9 | 56.76 | 62.32 | 60.78 | 46.91 | 63.33 | 49.88 | 59.51 |
LSTM | 71.72 | 53.55 | 54.74 | 72.77 | 55.19 | 68.33 | 58.9 | 67.32 | 54.42 | 66.1 | 69.21 | 56.9 | 66.52 | 65.78 | 71.72 | 68.12 | 61.9 | 71.72 | 45.26 | 66.76 | 63.54 | 63.36 |
1D CNN | 67.6 | 51.87 | 52.74 | 58.86 | 54.14 | 68.47 | 59.31 | 67.42 | 55.51 | 64.94 | 60.54 | 59.73 | 67.84 | 55.02 | 66.55 | 67.88 | 61.94 | 68.89 | 40.16 | 67.67 | 59.94 | 60.81 |
MLSTM | 68.33 | 54.25 | 49.95 | 69.49 | 53.62 | 68.47 | 65.54 | 67.49 | 54.56 | 65.01 | 68.12 | 60.54 | 66.66 | 68.86 | 71.72 | 68.16 | 63.37 | 71.72 | 49.46 | 64.49 | 54.56 | 63.07 |
EIFLSTM | 72.69 | 54.95 | 68.12 | 70.12 | 65.15 | 69.33 | 66.86 | 68.58 | 61.81 | 68.46 | 71.06 | 70.57 | 70.26 | 69.7 | 73.27 | 69.05 | 72.92 | 72.19 | 71.27 | 70.6 | 71.72 | 68.98 |
Ours | 76.4 | 61.1 | 71.82 | 74.13 | 69.28 | 73.34 | 70.33 | 72.42 | 65.18 | 72.64 | 75.05 | 74.81 | 73.43 | 74.82 | 76.41 | 74.43 | 76.58 | 75.74 | 75.41 | 74.55 | 76.94 | 73.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, B.; Yu, X.; Chen, J. Multi-Height and Heterogeneous Sensor Fusion Discriminant with LSTM for Weak Fire Signal Detection in Large Spaces with High Ceilings. Electronics 2024, 13, 2572. https://doi.org/10.3390/electronics13132572
Wang L, Li B, Yu X, Chen J. Multi-Height and Heterogeneous Sensor Fusion Discriminant with LSTM for Weak Fire Signal Detection in Large Spaces with High Ceilings. Electronics. 2024; 13(13):2572. https://doi.org/10.3390/electronics13132572
Chicago/Turabian StyleWang, Li, Boning Li, Xiaosheng Yu, and Jubo Chen. 2024. "Multi-Height and Heterogeneous Sensor Fusion Discriminant with LSTM for Weak Fire Signal Detection in Large Spaces with High Ceilings" Electronics 13, no. 13: 2572. https://doi.org/10.3390/electronics13132572
APA StyleWang, L., Li, B., Yu, X., & Chen, J. (2024). Multi-Height and Heterogeneous Sensor Fusion Discriminant with LSTM for Weak Fire Signal Detection in Large Spaces with High Ceilings. Electronics, 13(13), 2572. https://doi.org/10.3390/electronics13132572