Control of an Energy-Harvesting System Using Sinha’s Theory for the Purpose of Energy Production
Abstract
1. Introduction
2. Energy-Harvesting System Model
3. Material and Methods
3.1. Stability Analysis
3.1.1. Some Results from Lyapunov–Floquet Theory
- If all characteristic exponents have a negative real part, then all solutions of the system (Equation (3)) are asymptotically stable.
- If at least one of the characteristic exponents has a positive real part, then the system (Equation (3)) is unstable.
- If all the characteristic exponents have a zero or negative real part, and those with a zero real part are simple roots of the characteristic polynomial of R, then the system is stable; if the roots with a zero real part are not simple, then the system is unstable.
3.1.2. Sinha and Butcher Technique for State Transition Matrix Approximation
3.2. Control of Periodic Systems Via Lyapunov–Floquet Transformation
4. Results and Discussions
4.1. Stability Analysis
4.2. Global Sensitivity Analysis
4.3. Control Design Via Lyapunov–Floquet Transformation
4.4. Net Output Power
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andò, B.; Baglio, S.; Trigona, C.; Dumas, N.; Latorre, L.; Nouet, P. Nonlinear mechanism in MEMS devices for energy harvesting applications. J. Micromech. Microeng. 2010, 20, 12502. [Google Scholar] [CrossRef]
- Sohn, J.W.; Choi, S.B.; Lee, D.Y. An investigation on piezoelectric energy harvesting for MEMS power sources. J. Mech. Eng. Sci. 2005, 219, 429–436. [Google Scholar] [CrossRef]
- Challa, V.R.; Prasad, M.G.; Shi, Y.; Fisher, F.T. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 2008, 17, 15–35. [Google Scholar] [CrossRef]
- Eichhorn, C.; Goldschmidtboeing, F.; Porro, Y.; Woias, P. A piezoelectric harvester with an integrated frequency-tuning mechanism. In Proceedings of the Power MEMS 2009, Washington, DC, USA, 1–4 December 2009; pp. 45–48. [Google Scholar]
- Zhu, D. Vibration energy harvesting: Machinery vibration, human movement and flow induced vibration. Sustain. Energy Harvest. Technol. Past Present Future 2011, 1, 22–54. [Google Scholar]
- Marelli, S.; Lamas, C.; Sudret, B.; Konakli, K.; Mylonas, C. UQLab User Manual-Sensitivity Analysis, Report UQLab; UQLab: Zurich, Switzerland, 2019; Volume 1, pp. 4–106. [Google Scholar]
- Sinha, S.C.; Joseph, P. Control of general dynamic systems with periodically varying parameters via Liapunov-Floquet transformation. ASME. J. Dyn. Sys. Meas. Control 1994, 116, 650–658. [Google Scholar] [CrossRef]
- David, A.; Sinha, S.C. Control of chaos in nonlinear systems with time-periodic coefficients. In Proceedings of the American Control Conference, Chicago, IL, USA, 28–30 June 2000; pp. 764–768. [Google Scholar]
- Sinha, S.C.; Dávid, A. Control of chaos in nonlinear systems with time-periodic coefficients. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2006, 364, 2417–2432. [Google Scholar] [CrossRef] [PubMed]
- Daqaq, M.F.; Stabler, C.; Qaroush, Y.; Seuaciuc-Osório, T. Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 2009, 20, 545–557. [Google Scholar] [CrossRef]
- Norenberg, J.P.; Cunha, A., Jr.; Silva, S.; Varoto, P.S. Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dyn. 2022, 109, 443–458. [Google Scholar] [CrossRef]
- Sinha, S.C.; Butcher, E.A. Symbolic computation of fundamental solution matrices for linear time-periodic dynamical systems. J. Sound Vib. 1997, 206, 61–85. [Google Scholar] [CrossRef]
- Marelli, S.; Sudret, B. UQLab User Manual-Polynomial Chaos Expansions, Chair of Risk, Safety and Uncertainty Quantification; ETH: Zürich, Switzerland, 2015; pp. 4–104. [Google Scholar]
- Cauz, L.O.; Chavarette, F.R. Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System. J. Vib. Test. Syst. Dyn. 2023, 7, 253–263. [Google Scholar] [CrossRef]
- Meirovitch, L. Methods of Analytical Dynamics; Courier Corporation: Chelmsford, MA, USA, 2010. [Google Scholar]
- Monteiro, L.H.A. Sistemas Dinâmicos; Editora Livraria da Física: São Paulo, SP, Brazil, 2011. [Google Scholar]
- Naifeh, A.H.; Balachandran, B. Applied Nonlinear Dynamics; John Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Andrade, E.X.L.; Bracciali, C.F.; Rafaeli, F.R. Introdução aos Polinômios Ortogonais; Sociedade Brasileira de Matemática Aplicada e Computacional: São Carlos, SP, Brazil, 2012. [Google Scholar]
- Meirovitch, L. Methods of Analytical Dynamics; MaGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Iakubovich, V.A.; Starzhinskii, V.M. Linear Differencial Equations with Periodic Coefficients; John Wiley: Hoboken, NJ, USA, 1975. [Google Scholar]
- Sinha, S.C.; Henrichs, J.T.; Ravindra, B. A General Approach in the Design of Active controllers for nonlinear Systems exhibiting Chaos. Int. J. Bifurc. Chaos 2000, 10, 165–178. [Google Scholar] [CrossRef]
- Sharma, A.; Sinha, S.C. An approximate analysis of quasi-periodic systems via Floquet theory. J. Comput. Nonlinear Dyn. 2018, 13, 1–18. [Google Scholar] [CrossRef]
- Butcher, E.A.; Sinha, S.C. Symbolic computation of local stability and bifurcation surfaces for nonlinear time-periodic systems. Nonlinear Dyn. 1998, 17, 1–21. [Google Scholar] [CrossRef]
- Roundy, S.; Zhang, Y. Toward self-tuning adaptive vibration-based microgenerators. In Proceedings of the Smart Structures, Devices and Systems 2004, Sydney, Australia, 12–15 December 2004; pp. 373–384. [Google Scholar]
- Lallart, M.; Anton, S.R.; Inman, D.J. Frequency self-tuning scheme for broadband vibration energy harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 897–906. [Google Scholar] [CrossRef]
- Ferreira, D.C.; Chavarette, F.R.; Peruzzi, N.J. Linear matrix inequalities control driven for non-ideal power source energy harvesting. J. Theor. Appl. Mech. 2015, 15, 605–616. [Google Scholar] [CrossRef][Green Version]
Parameters |
---|
R: resistor |
: viscous damping |
: quadratic damping (air resistance) |
: constant |
: constant |
: electromechanical coupling |
: piezoelectric element capacitance |
F: excitation amplitude |
: natural frequency of the beam |
: excitation frequency |
m: beam mass |
: beam length |
Parameter | Output Mean Power | |||
---|---|---|---|---|
Parameter | Output Mean Power | |||
---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cauz, L.O.; Chavarette, F.R. Control of an Energy-Harvesting System Using Sinha’s Theory for the Purpose of Energy Production. Electronics 2024, 13, 2559. https://doi.org/10.3390/electronics13132559
Cauz LO, Chavarette FR. Control of an Energy-Harvesting System Using Sinha’s Theory for the Purpose of Energy Production. Electronics. 2024; 13(13):2559. https://doi.org/10.3390/electronics13132559
Chicago/Turabian StyleCauz, Luiz Oreste, and Fábio Roberto Chavarette. 2024. "Control of an Energy-Harvesting System Using Sinha’s Theory for the Purpose of Energy Production" Electronics 13, no. 13: 2559. https://doi.org/10.3390/electronics13132559
APA StyleCauz, L. O., & Chavarette, F. R. (2024). Control of an Energy-Harvesting System Using Sinha’s Theory for the Purpose of Energy Production. Electronics, 13(13), 2559. https://doi.org/10.3390/electronics13132559