Space–Space–Wavelength and Wavelength–Space–Space Switch Structures for Flexible Optical Networks
Abstract
1. Introduction
2. Related Works
- Specification of necessary and sufficient conditions of SNBs in the WSS and SSW networks.
- Determination of the number of elements in these networks for various implementations of wavelength-converting switches.
- A comparison between the number of spectrum converters in WSS and SSW networks, which requires a minimum number of these elements, shows that this number can be at least 50% less than in WSW and SWS networks with the same capacity.
3. The Switching Fabric Architecture, Problem Statement, and Notation
The Architecture
4. Strict-Sense Non-Blocking Conditions
5. Cost Assessment and Comparison with Other Structures
5.1. The Number of Switches
5.2. The Number of TSCs
5.3. The Number of BV-WSS and PCs
5.4. Cost Assessment Summary
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BV-WSS | bandwidth–variable wavelength-selective switch |
CS | spectrum-converting switch |
DCN | data center network |
EON | elastic optical network |
FSU | frequency slot unit |
PC | passive combiner |
PNB | repackable non-blocking |
RNB | rearrangeable non-blocking |
SNB | strict-sense non-blocking |
SS | space switch |
SSW | space–space–wavelength switching network |
SWS | space–wavelength–space switching network |
TSC | tunable spectrum converter |
WNB | wide-sense non-blocking |
WSS | wavelength–space–space switching networks |
WSW | wavelength–space–wavelength switching networks |
Notations | |
the input stage switch i of any switching fabric (SSW or WSS) | |
m | the number of FSUs used by a connection |
the maximum number of FSUs used by a connection | |
the center stage switch k of any switching fabric (SSW or WSS) | |
n | the number of FSUs in one link |
the output stage switch j of any switching fabric (SSW or WSS) | |
p | the number of switches in the second (center) stage |
the number of inputs in | |
the number of outputs in | |
the number of switches in the first stage | |
the number of switches in the third stage | |
v | the number of links between two switches of adjacent stages |
an connection from to that uses any of the input and output links and slots |
References
- CISCO. 2023 Global Netwroking Trends Survey Results; Technical Report; CISCO: San Jose, CA, USA, 2023. [Google Scholar]
- CISCO. Cisco: Annual Internet Report (2018–2023); Technical Report; CISCO: San Jose, CA, USA, 2020. [Google Scholar] [CrossRef]
- Jinno, M.; Takara, H.; Kozicki, B.; Tsukishima, Y.; Sone, Y.; Matsuoka, S. Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies. IEEE Commun. Mag. 2009, 47, 66–73. [Google Scholar] [CrossRef]
- Gerstel, O.; Jinno, M.; Lord, A.; Yoo, S.J.B. Elastic Optical Networking: A New Dawn for the Optical Layer? IEEE Commun. Mag. 2012, 50, S12–S20. [Google Scholar] [CrossRef]
- Tomkos, I.; Azodolmolky, S.; Sole-Pareta, J.; Careglio, D.; Palkopoulou, E. A Tutorial on the Flexible Optical Networking Paradigm: State of the Art, Trends, and Research Challenges. Proc. IEEE 2014, 102, 1317–1337. [Google Scholar] [CrossRef]
- ITU-T. ITU-T Recommendation G.694.1. Spectral Grids for WDM Applications: DWDM Frequency Grid; International Telecommunication Union–Telecommunication Standardization Sector (ITU-T): Geneva, Switzerland, 2012. [Google Scholar]
- Chatterjee, B.C.; Sarma, N.; Oki, E. Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial. IEEE Commun. Surv. Tutor. 2015, 17, 1776–1800. [Google Scholar] [CrossRef]
- Chadha, D. Optical WDM Networks: From Static to Elastic Networks; Wiley IEEE Press: Hoboken, NJ, USA, 2019; pp. 1–373. [Google Scholar] [CrossRef]
- Chatterjee, B.C.; Oki, E. Elastic Optical Networks: Fundamentals, Design, Control, and Management; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Filer, M.; Gaudette, J.; Ghobadi, M.; Mahajan, R.; Issenhuth, T.; Klinkers, B.; Cox, J. Elastic optical networking in the Microsoft cloud [invited]. J. Opt. Commun. Netw. 2016, 8, A45–A54. [Google Scholar] [CrossRef]
- Aibin, M.; Walkowiak, K. Analysis of inter-data center elastic optical network. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Amri, F.S.; Huang, Z.; Liu, K.; Pan, J. Energy-Aware Inter-Data Center VM Migration Over Elastic Optical Networks. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 5421–5426. [Google Scholar] [CrossRef]
- Nakada, K.; Takeshita, H.; Kuno, Y.; Matsuno, Y.; Urashima, I.; Shimomura, Y.; Jinno, M. Single Multicore-Fiber Bidirectional Spatial Channel Network Based on Spatial Cross-Connect and Multicore EDFA Efficiently Accommodating Asymmetric Traffic. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber-optic transmission and networking: The previous 20 and the next 20 years [Invited]. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef] [PubMed]
- Alshowkan, M.; Lukens, J.M.; Lu, H.H.; Kirby, B.T.; Williams, B.P.; Grice, W.P.; Peters, N.A. Broadband polarization-entangled source for C + L-band flex-grid quantum networks. Opt. Lett. 2022, 47, 6480–6483. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chang, T.; Zhai, Z.; Bose, S.K.; Shen, G. Wavelength Selective Switch-Based Clos Network: Blocking Theory and Performance Analyses. J. Light. Technol. 2022, 40, 5842–5853. [Google Scholar] [CrossRef]
- Mehrvar, H.; Li, S.; Bernier, E. Dimensioning networks of ROADM cluster nodes. J. Opt. Commun. Netw. 2023, 15, C166–C178. [Google Scholar] [CrossRef]
- Cheng, Z.; Ye, T.; Zhu, Y.; Hu, W. A Three-Phase Modularization Approach of OXC for Large-Scale ROADM. J. Light. Technol. 2023, 41, 7318–7327. [Google Scholar] [CrossRef]
- Mano, T.; Inoue, T.; Mizutani, K.; Akashi, O. Redesigning the Nonblocking Clos Network to Increase Its Capacity. IEEE Trans. Netw. Serv. Manag. 2023, 20, 2558–2574. [Google Scholar] [CrossRef]
- Svaluto Moreolo, M.; Spadaro, S.; Calabretta, N. Optical Switching Systems and Flex-Grid Technologies. In Handbook of Radio and Optical Networks Convergence; Kawanishi, T., Ed.; Springer Nature Singapore: Singapore, 2023; pp. 1–37. [Google Scholar] [CrossRef]
- Yao, Y.; Ye, T.; Deng, N. Nonblocking conditions for flex-grid OXC–Clos Networks. In Proceedings of the IEEE INFOCOM 2024—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 20–23 May 2024; pp. 1–10. [Google Scholar]
- Huang, Z.; Yang, S.; Zheng, Z.; Pan, X.; Li, H.; Yang, H. Highly Compact Twin 1 × 35 Wavelength Selective Switch. J. Light. Technol. 2023, 41, 233–239. [Google Scholar] [CrossRef]
- Patsamanis, G.; Ketzaki, D.; Chatzitheocharis, D.; Vyrsokinos, K. Optical Design of a Wavelength Selective Switch Utilizing a Waveguide Frontend with Beamsteering Capability. Photonics 2024, 11, 381. [Google Scholar] [CrossRef]
- Ma, Y.; Stewart, L.; Armstrong, J.; Clarke, I.G.; Baxter, G. Recent Progress of Wavelength Selective Switch. J. Light. Technol. 2021, 39, 896–903. [Google Scholar] [CrossRef]
- Chatterjee, B.C.; Ba, S.; Oki, E. Fragmentation Problems and Management Approaches in Elastic Optical Networks: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 183–210. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Guo, B.; He, Y.; Chen, Z.; Wu, H. Comparison of Node Architectures for Elastic Optical Networks with Waveband Conversion. China Commun. 2013, 10, 77–87. [Google Scholar]
- Kabaciński, W.; Michalski, M.; Rajewski, R. Strict-Sense Nonblocking W-S-W Node Architectures for Elastic Optical Networks. J. Light. Tech. 2016, 34, 3155–3162. [Google Scholar] [CrossRef]
- Danilewicz, G.; Kabaciński, W.; Rajewski, R. Strict-sense nonblocking space-wavelength-space switching fabrics for elastic optical network nodes. J. Opt. Commun. Netw. 2016, 8, 745–756. [Google Scholar] [CrossRef]
- Clos, C. A study of non-blocking switching networks. Bell Syst. Tech. J. 1953, 32, 406–424. [Google Scholar] [CrossRef]
- Kabaciński, W.; Al-Tameemie, A.; Rajewski, R. Necessary and Sufficient Conditions for the Rearrangeability of WSW1 Switching Fabrics. IEEE Access 2019, 7, 18622–18633. [Google Scholar] [CrossRef]
- Lin, B.C. Rearrangeable W-S-W elastic optical networks generated by graph approaches: Erratum. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, 282–284. [Google Scholar] [CrossRef]
- Lin, B. New upper bound for a rearrangeable non-blocking WSW architecture. IET Commun. 2019, 13, 3425–3433. [Google Scholar] [CrossRef]
- Danilewicz, G. Asymmetrical Space-Conversion-Space SCS1 Strict-Sense and Wide-Sense Nonblocking Switching Fabrics for Continuous Multislot Connections. IEEE Access 2019, 7, 107058–107072. [Google Scholar] [CrossRef]
- Danilewicz, G. Supplement to “Asymmetrical Space-Conversion Space SCS1 Strict-Sense and Wide-Sense Nonblocking Switching Fabrics for Continuous Multislot Connections”—The SCS2 Switching Fabrics Case. IEEE Access 2019, 7, 167577–167583. [Google Scholar] [CrossRef]
- Lin, B.C. Rearrangeable and Repackable S-W-S Elastic Optical Networks for Connections with Limited Bandwidths. Appl. Sci. 2020, 10, 1251. [Google Scholar] [CrossRef]
- López, V.; Velasco, L. Elastic Optical Networks. Architectures, Technologies, and Control; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Khodashenas, P.; Rivas-Moscoso, J.; Shariati, B.; Marom, D.; Klonidis, D.; Tomkos, I. Investigation of Spectrum Granularity for Performance Optimization of Flexible Nyquist-WDM-Based Optical Networks. J. Light. Technol. 2015, 33, 4767–4774. [Google Scholar] [CrossRef]
- Tomkos, I.; Khodashenas, P.S.; Rivas-Moscoso, J.M.; Klonidis, D. Switching and Routing for Spatially and Spectrally Flexible Elastic Optical Networking (IEEE HPSR 2015 Tutorial). In Proceedings of the High Performance Switching and Routing (HPSR), Budapest, Hungary, 1–4 July 2015. [Google Scholar]
- Tomkos, I.; Miyamoto, Y.; Wellbrock, G.; Winzer, P.J. Spatially and Spectrally Flexible Elastic Optical Networking (Guest Editiorial). IEEE Commun. Mag. 2015, 53, 20–22. [Google Scholar] [CrossRef]
- Song, M.; Pincemin, E.; Josten, A.; Baeuerle, B.; Hillerkuss, D.; Leuthold, J.; Rudnick, R.; Marom, D.M.; Ben Ezra, S.; Ferran, J.F.; et al. Flexible Optical Cross-Connects for High Bit Rate Elastic Photonic Transport Networks [Invited]. J. Opt. Commun. Netw. 2016, 8, 126–140. [Google Scholar] [CrossRef]
- Marom, D.M.; Colbourne, P.D.; Errico, A.D.; Fontaine, N.K.; Proietti, R.; Zong, L.; Rivas-moscoso, J.M.; Tomkos, I. Survey of Photonic Switching Architectures and Technologies in Support of Spatially and Spectrally Flexible Optical Networking [Invited]. J. Opt. Commun. Netw. 2017, 9, 1–26. [Google Scholar] [CrossRef]
- Liu, H.; Sang, L.; Chen, Y. A multicast contention resolution scheme based on shared spectrum converter for elastic optical switching node. Opt.-Int. J. Light Electron Opt. 2017, 144, 316–323. [Google Scholar] [CrossRef]
- Xie, D.; Wang, D.; Zhang, M.; Liu, Z.; You, Q.; Yang, Q.; Yu, S. LCoS-Based Wavelength-Selective Switch for Future Finer-Grid Elastic Optical Networks Capable of All-Optical Wavelength Conversion. IEEE Photonics J. 2017, 9, 7101212. [Google Scholar] [CrossRef]
- Stasiak, M.; Sobieraj, M.; Zwierzykowski, P. Modeling of Multi-Service Switching Networks with Multicast Connections. IEEE Access 2022, 10, 5359–5377. [Google Scholar] [CrossRef]
- Glabowski, M.; Sobieraj, M.; Stasiak, M. Analytical Model of a Single Link of Elastic Optical Networks. IEEE Access 2022, 10, 90200–90212. [Google Scholar] [CrossRef]
- Gła̧bowski, M.; Ivanov, H.; Leitgeb, E.; Sobieraj, M.; Stasiak, M. Simulation studies of elastic optical networks based on 3-stage Clos switching fabric. Opt. Switch. Netw. 2020, 36, 100555. [Google Scholar] [CrossRef]
- Sobieraj, M.; Zwierzykowski, P.; Leitgeb, E. Simulation Studies of Elastic Optical Networks Nodes with Multicast Connections. Hum.-Centric Comput. Inf. Sci. 2022, 12, 5. [Google Scholar] [CrossRef]
- Beneš, V.E. Mathematical Theory of Connecting Networks and Telephone Traffic; Academic Press: New York, USA, 1965. [Google Scholar]
- Pattavina, A. Switching Theory; John Wiley & Sons, Inc.: Chichester, England, 1998. [Google Scholar]
- Hwang, F. The Mathematical Theory of Nonblocking Switching Networks, 2nd ed.; World Scientific Publishing Co., Inc.: Hackensack, NJ, USA; London, UK, 2004; Volume 15. [Google Scholar]
- Kabaciński, W. Nonblocking Electronic and Photonic Switching Fabrics; Springer: New York, NY, USA, 2005. [Google Scholar]
- Kabaciński, W.; Michalski, M.; Abdulsahib, M. The Strict-Sense Nonblocking Elastic Optical Switch. In Proceedings of the IEEE 25th International Conference on High Performance Switching and Routing (HPSR), Budapest, Hungary, 1–4 July 2015. [Google Scholar]
- Kabaciński, W.; Michalski, M.; Abdulsahib, M. Wide-Sense Nonblocking Elastic Optical Switch. Opt. Switch. Netw. 2017, 25, 71–79. [Google Scholar] [CrossRef]
- Kabaciński, W.; Abdulsahib, M.; Michalski, M. Wide-sense nonblocking W-S-W node architectures for elastic optical networks. IEICE Trans. Commun. 2019, E102-B, 978–991. [Google Scholar] [CrossRef]
- Kabacinski, W.; Al-Tameemie, A.; Rajewski, R. Rearrangeability of Wavelength-Space-Wavelength Switching Fabric Architecture for Elastic Optical Switches. IEEE Access 2019, 7, 64993–65006. [Google Scholar] [CrossRef]
- Kabaciński, W.; Abdulsahib, M. Wide-sense nonblocking converting-space-converting switching node architecture under XsVarSWITCH control algorithm. IEEE/ACM Trans. Netw. 2020, 28, 1550–1561. [Google Scholar] [CrossRef]
- Abuelela, E.; Żal, M.; Kabaciński, W. Simultaneous Connections Routing in Wavelength–Space–Wavelength Elastic Optical Switches. Sensors 2023, 23, 3615. [Google Scholar] [CrossRef]
- Abdulsahib, M.; Kabaciński, W. The Strict-Sense Nonblocking S-S-W Elastic Optical Switching Fabric; Technical Report TR-KK-33/2/2019/A; Poznan University of Technology: Poznań, Poland, 2019. [Google Scholar]
- Abdulsahib, M.; Kabaciński, W. Comparisons between W-S-W, S-W-S, and S-S-W Switching Fabric Architectures in Terms of Required Switching Elements; Technical Report TR-KK-35/4/2019/A; Poznan University of Technology: Poznań, Poland, 2019. [Google Scholar]
- De Groote, M.; Manousakis, K.; Kokkinos, P.; Colle, D.; Pickavet, M.; Christodoulopoulos, K.; Varvarigos, E.; Demeester, P. Cost comparison of different translucent optical network architectures. In Proceedings of the 2010 9th Conference of Telecommunication, Media and Internet, CTTE 2010, Ghent, Belgium, 7–9 June 2010; pp. 1–8. [Google Scholar] [CrossRef]
n | SSW | WSS | WSW | SWS1 | SWS2 |
---|---|---|---|---|---|
20 | 1280 | 1280 | 2560 | 25,400 | 26,240 |
40 | 2560 | 2560 | 5120 | 101,600 | 103,680 |
60 | 3840 | 3840 | 7680 | 228,600 | 232,320 |
80 | 5120 | 5120 | 10,240 | 406,400 | 412,160 |
100 | 6400 | 6400 | 12,800 | 635,000 | 643,200 |
120 | 7680 | 7680 | 15,360 | 914,400 | 925,440 |
140 | 8960 | 8960 | 17,920 | 1,244,600 | 1,258,880 |
160 | 10,240 | 10,240 | 20,480 | 1,625,600 | 1,643,520 |
320 | 20,480 | 20,480 | 40,960 | 6,502,080 | 6,563,840 |
m= | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
v = 1 | 1596 | 1844 | 2092 | 2340 | 2588 | 2836 | 3084 | 3332 | 3580 | 3828 | 4076 | 4324 | 4572 | 4820 | 5068 | 5316 | 5564 | 5812 | 6060 | 6308 |
v = 2 | 1592 | 1848 | 2088 | 2344 | 2584 | 2840 | 3080 | 3336 | 3576 | 3832 | 4072 | 4328 | 4568 | 4824 | 5064 | 5320 | 5560 | 5816 | 6056 | 6312 |
v = 3 | 1596 | 1836 | 2100 | 2340 | 2580 | 2844 | 3084 | 3324 | 3588 | 3828 | 4068 | 4332 | 4572 | 4812 | 5076 | 5316 | 5556 | 5820 | 6060 | 6300 |
v = 4 | 1584 | 1840 | 2096 | 2352 | 2576 | 2832 | 3088 | 3344 | 3568 | 3824 | 4080 | 4336 | 4560 | 4816 | 5072 | 5328 | 5552 | 5808 | 6064 | 6320 |
v = 5 | 1604 | 1844 | 2084 | 2324 | 2604 | 2844 | 3084 | 3324 | 3564 | 3844 | 4084 | 4324 | 4564 | 4804 | 5084 | 5324 | 5564 | 5804 | 6044 | 6324 |
v = 6 | 1608 | 1848 | 2088 | 2328 | 2568 | 2856 | 3096 | 3336 | 3576 | 3816 | 4056 | 4344 | 4584 | 4824 | 5064 | 5304 | 5544 | 5832 | 6072 | 6312 |
v = 7 | 1596 | 1820 | 2100 | 2324 | 2604 | 2828 | 3108 | 3332 | 3556 | 3836 | 4060 | 4340 | 4564 | 4844 | 5068 | 5292 | 5572 | 5796 | 6076 | 6300 |
v = 8 | 1568 | 1824 | 2080 | 2336 | 2592 | 2848 | 3104 | 3360 | 3552 | 3808 | 4064 | 4320 | 4576 | 4832 | 5088 | 5344 | 5536 | 5792 | 6048 | 6304 |
v =9 | 1596 | 1812 | 2100 | 2316 | 2604 | 2820 | 3108 | 3324 | 3612 | 3828 | 4044 | 4332 | 4548 | 4836 | 5052 | 5340 | 5556 | 5844 | 6060 | 6276 |
v = 10 | 1624 | 1864 | 2104 | 2344 | 2584 | 2824 | 3064 | 3304 | 3544 | 3864 | 4104 | 4344 | 4584 | 4824 | 5064 | 5304 | 5544 | 5784 | 6024 | 6344 |
v = 11 | 1564 | 1828 | 2092 | 2356 | 2620 | 2796 | 3060 | 3324 | 3588 | 3852 | 4116 | 4292 | 4556 | 4820 | 5084 | 5348 | 5524 | 5788 | 6052 | 6316 |
v = 12 | 1584 | 1872 | 2064 | 2352 | 2544 | 2832 | 3120 | 3312 | 3600 | 3792 | 4080 | 4368 | 4560 | 4848 | 5040 | 5328 | 5520 | 5808 | 6096 | 6288 |
v = 13 | 1604 | 1812 | 2124 | 2332 | 2540 | 2852 | 3060 | 3372 | 3580 | 3788 | 4100 | 4308 | 4620 | 4828 | 5036 | 5348 | 5556 | 5764 | 6076 | 6284 |
v = 14 | 1624 | 1848 | 2072 | 2296 | 2632 | 2856 | 3080 | 3304 | 3528 | 3864 | 4088 | 4312 | 4536 | 4872 | 5096 | 5320 | 5544 | 5768 | 6104 | 6328 |
v = 15 | 1644 | 1884 | 2124 | 2364 | 2604 | 2844 | 3084 | 3324 | 3564 | 3804 | 4044 | 4284 | 4524 | 4764 | 5124 | 5364 | 5604 | 5844 | 6084 | 6324 |
v = 16 | 1536 | 1792 | 2048 | 2304 | 2560 | 2816 | 3072 | 3328 | 3584 | 3840 | 4096 | 4352 | 4608 | 4864 | 5120 | 5376 | 5504 | 5760 | 6016 | 6272 |
WSS | |||||||||
= 32 | = 16 | = 8 | |||||||
m= | 4 | 6 | 8 | 4 | 6 | 8 | 4 | 6 | 8 |
= 32 | 2296 | 2796 | 3304 | 2436 | 2982 | 3558 | 2874 | 3624 | 4374 |
= 16 | 2436 | 2982 | 3558 | 2296 | 2744 | 3272 | 2412 | 2928 | 3468 |
= 8 | 2874 | 3624 | 4374 | 2412 | 2928 | 3468 | 2256 | 2688 | 3120 |
= 4 | 3810 | 5034 | 6258 | 2804 | 3524 | 4244 | 2328 | 2808 | 3288 |
= 2 | 5730 | 7906 | 10082 | 3684 | 4836 | 5988 | 2664 | 3304 | 3944 |
SSW | |||||||||
= 32 | = 16 | = 8 | |||||||
m= | 4 | 6 | 8 | 4 | 6 | 8 | 4 | 6 | 8 |
= 32 | 3072 | 3320 | 3568 | 4222 | 4390 | 4582 | 6714 | 6824 | 6934 |
= 16 | 2692 | 3046 | 3424 | 3072 | 3256 | 3528 | 4204 | 4348 | 4492 |
= 8 | 2874 | 3464 | 4054 | 2668 | 2992 | 3340 | 3024 | 3200 | 3376 |
= 4 | 3682 | 4762 | 5842 | 2804 | 3364 | 3924 | 2584 | 2872 | 3160 |
= 2 | 5538 | 7578 | 9618 | 3556 | 4564 | 5572 | 2664 | 3144 | 3624 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabaciński, W.; Al-Tameemi, A. Space–Space–Wavelength and Wavelength–Space–Space Switch Structures for Flexible Optical Networks. Electronics 2024, 13, 2544. https://doi.org/10.3390/electronics13132544
Kabaciński W, Al-Tameemi A. Space–Space–Wavelength and Wavelength–Space–Space Switch Structures for Flexible Optical Networks. Electronics. 2024; 13(13):2544. https://doi.org/10.3390/electronics13132544
Chicago/Turabian StyleKabaciński, Wojciech, and Atyaf Al-Tameemi. 2024. "Space–Space–Wavelength and Wavelength–Space–Space Switch Structures for Flexible Optical Networks" Electronics 13, no. 13: 2544. https://doi.org/10.3390/electronics13132544
APA StyleKabaciński, W., & Al-Tameemi, A. (2024). Space–Space–Wavelength and Wavelength–Space–Space Switch Structures for Flexible Optical Networks. Electronics, 13(13), 2544. https://doi.org/10.3390/electronics13132544