FPGA-Based Acceleration of Polar-Format Algorithm for Video Synthetic-Aperture Radar Imaging
Abstract
:1. Introduction
2. Background
2.1. Geometry and Frame Rate of Video SAR
2.2. Polar-Format Algorithm
3. Proposed Hardware Architecture
3.1. Base-4 Systolic Array FFT Unit Hardware Architecture
3.2. Interpolation Unit Hardware Architecture
4. Implementation and Acceleration Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, W.M.; Porcello, L.J. An introduction to synthetic-aperture radar. IEEE Spectr. 1969, 6, 52–62. [Google Scholar] [CrossRef]
- Munson, D.C.; Visentin, R.L. A signal processing view of strip-mapping synthetic aperture radar. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 2131–2147. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Lou, Y.; Clark, D.; Marks, P.; Muellerschoen, R.J.; Wang, C.C. Onboard radar processor development for rapid response to natural hazards. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2770–2776. [Google Scholar] [CrossRef]
- Percivall, G.S.; Alameh, N.S.; Caumont, H.; Moe, K.L.; Evans, J.D. Improving disaster management using earth observations—GEOSS and CEOS activities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1368–1375. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumar, B.S.; Desai, N.M.; Gujraty, V. SAR for disaster management. IEEE Aerosp. Electron. Syst. Mag. 2008, 23, 4–9. [Google Scholar] [CrossRef]
- Yang, X.; Shi, J.; Zhou, Y.; Wang, C.; Hu, Y.; Zhang, X.; Wei, S. Ground moving target tracking and refocusing using shadow in video-SAR. Remote Sens. 2020, 12, 3083. [Google Scholar] [CrossRef]
- Guo, P.; Wu, F.; Tang, S.; Jiang, C.; Liu, C. Implementation Method of Automotive Video SAR (ViSAR) Based on Sub-Aperture Spectrum Fusion. Remote Sens. 2023, 15, 476. [Google Scholar] [CrossRef]
- Kim, C.K.; Azim, M.T.; Singh, A.K.; Park, S.O. Doppler shifting technique for generating multi-frames of video SAR via sub-aperture signal processing. IEEE Trans. Signal Process. 2020, 68, 3990–4001. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Z.; Deng, Y.; Wang, W.; Wang, P.; Zhao, F. Generation of Multiple Frames for High Resolution Video SAR Based on Time Frequency Sub-Aperture Technique. Remote Sens. 2023, 15, 264. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, J.; Sun, Z.; Zhong, C. Processing of airborne video SAR data using the modified back projection algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Bimber, O.; Kurmi, I.; Schedl, D.C. Synthetic aperture imaging with drones. IEEE Comput. Graph. Appl. 2019, 39, 8–15. [Google Scholar] [CrossRef]
- Liu, B.; Wang, K.; Liu, X.; Yu, W. An efficient SAR processor based on GPU via CUDA. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; pp. 1–5. [Google Scholar]
- Tang, H.; Li, G.; Zhang, F.; Hu, W.; Li, W. A spaceborne SAR on-board processing simulator using mobile GPU. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1198–1201. [Google Scholar]
- Wielage, M.; Cholewa, F.; Fahnemann, C.; Pirsch, P.; Blume, H. High performance and low power architectures: GPU vs. FPGA for fast factorized backprojection. In Proceedings of the 2017 Fifth International Symposium on Computing and Networking (CANDAR), Aomori, Japan, 19–22 November 2017; pp. 351–357. [Google Scholar]
- Wang, S.; Zhang, S.; Huang, X.; An, J.; Chang, L. A highly efficient heterogeneous processor for SAR imaging. Sensors 2019, 19, 3409. [Google Scholar] [CrossRef]
- Hartley, T.D.; Fasih, A.R.; Berdanier, C.A.; Ozguner, F.; Catalyurek, U.V. Investigating the use of GPU-accelerated nodes for SAR image formation. In Proceedings of the 2009 IEEE International Conference on Cluster Computing and Workshops, New Orleans, LA, USA, 31 August–4 September 2009; pp. 1–8. [Google Scholar]
- Ning, X.; Yeh, C.; Zhou, B.; Gao, W.; Yang, J. Multiple-GPU accelerated range-Doppler algorithm for synthetic aperture radar imaging. In Proceedings of the 2011 IEEE RadarCon (RADAR), Kansas City, MO, USA, 23–27 May 2011; pp. 698–701. [Google Scholar]
- Le, C.; Chan, S.; Cheng, F.; Fang, W.; Fischman, M.; Hensley, S.; Johnson, R.; Jourdan, M.; Marina, M.; Parham, B.; et al. Onboard FPGA-based SAR processing for future spaceborne systems. In Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509), Philadelphia, PA, USA, 29 April 2004; pp. 15–20. [Google Scholar]
- Wiehle, S.; Mandapati, S.; Günzel, D.; Breit, H.; Balss, U. Synthetic aperture radar image formation and processing on an MPSoC. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Xie, Y.; Zhong, Z.; Li, B.; Xie, Y.; Chen, L.; Chen, H. An ARM-FPGA Hybrid Acceleration and Fault Tolerant Technique for Phase Factor Calculation in Spaceborne Synthetic Aperture Radar Imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5059–5072. [Google Scholar] [CrossRef]
- Wang, J.; Feng, D.; Xu, Z.; Wu, Q.; Hu, W. Time-domain digital-coding active frequency selective surface absorber/reflector and its imaging characteristics. IEEE Trans. Antennas Propag. 2020, 69, 3322–3331. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Z.J.; Cao, Y.; Jiang, S. SAR imaging realization with FPGA based on VIVADO HLS. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar]
- Milton, M.; Benigni, A.; Monti, A. Real-time multi-FPGA simulation of energy conversion systems. IEEE Trans. Energy Convers. 2019, 34, 2198–2208. [Google Scholar] [CrossRef]
- Waidyasooriya, H.M.; Hariyama, M. Multi-FPGA accelerator architecture for stencil computation exploiting spacial and temporal scalability. IEEE Access 2019, 7, 53188–53201. [Google Scholar] [CrossRef]
- Brown, W.M.; Fredricks, R.J. Range-Doppler imaging with motion through resolution cells. IEEE Trans. Aerosp. Electron. Syst. 1969, AES-5, 98–102. [Google Scholar] [CrossRef]
- Sun, J.; Mao, S.; Wang, G.; Hong, W. Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration. Prog. Electromagn. Res. 2010, 103, 323–338. [Google Scholar] [CrossRef]
- Yegulalp, A.F. Fast backprojection algorithm for synthetic aperture radar. In Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No. 99CH36249), Waltham, MA, USA, 22 April 1999; pp. 60–65. [Google Scholar]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Shin, H.S.; Lim, J.T. Omega-K algorithm for spaceborne spotlight SAR imaging. IEEE Geosci. Remote Sens. Lett. 2011, 9, 343–347. [Google Scholar] [CrossRef]
- Desai, M.D.; Jenkins, W.K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans. Image Process. 1992, 1, 505–517. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, G.; Zhou, R.; Zhang, H.; Hong, W. Multi-channel back-projection algorithm for mmwave automotive MIMO SAR imaging with Doppler-division multiplexing. IEEE J. Sel. Top. Signal Process. 2022, 17, 445–457. [Google Scholar] [CrossRef]
- Walker, J.L. Range-Doppler imaging of rotating objects. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16, 23–52. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, J.; Mao, S. PFA algorithm for airborne spotlight SAR imaging with nonideal motions. IEE Proc.-Radar Sonar Navig. 2002, 149, 174–182. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Zheng, Q. A THz Video SAR Imaging Algorithm Based on Chirp Scaling. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; pp. 656–660. [Google Scholar]
- Rigling, B.D.; Moses, R.L. Polar format algorithm for bistatic SAR. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1147–1159. [Google Scholar] [CrossRef]
- Baas, B.M. A 9.5 mW 330 sec 1024-point FFT Processor. In Proceedings of the Custom Integrated Circuits Conference, Santa Clara, CA, USA, 11–14 May 1998; pp. 11–14. [Google Scholar]
- He, S.; Torkelson, M. Design and implementation of a 1024-point pipeline FFT processor. In Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No. 98CH36143), Santa Clara, CA, USA, 14 May 1998; pp. 131–134. [Google Scholar]
- Lee, M.K.; Shin, K.W.; Lee, J.K. A VLSI array processor for 16-point FFT. IEEE J.-Solid-State Circuits 1991, 26, 1286–1292. [Google Scholar] [CrossRef]
- Kung, H.T. Why systolic architectures? Computer 1982, 15, 37–46. [Google Scholar] [CrossRef]
- Kung, S.Y. VLSI array processors. IEEE ASSP Mag. 1985, 2, 4–22. [Google Scholar] [CrossRef]
- Chan, L.W.; Chen, M.Y. A new systolic array for discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1665–1666. [Google Scholar] [CrossRef]
- Wang, C.L.; Chang, Y.T. Efficient 2-D systolic array implementation of a prime factor DFT algorithm. In Proceedings of the TENCON’92-Technology Enabling Tomorrow, Notre Dame, IN, USA, 4–5 March 1992; pp. 56–60. [Google Scholar]
- Lee, M.H. High speed multidimensional systolic arrays for discrete Fourier transform. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1992, 39, 876–879. [Google Scholar] [CrossRef]
- Lim, H.; Swartzlander, E.E. Multidimensional systolic arrays for the implementation of discrete Fourier transforms. IEEE Trans. Signal Process. 1999, 47, 1359–1370. [Google Scholar]
- Meher, P.K. Efficient systolic implementation of DFT using a low-complexity convolution-like formulation. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 702–706. [Google Scholar] [CrossRef]
- Nash, J.G. Computationally efficient systolic architecture for computing the discrete Fourier transform. IEEE Trans. Signal Process. 2005, 53, 4640–4651. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, J.; Yang, W.; Sun, B.; Wang, Y. Image formation method for spaceborne video SAR. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; pp. 148–151. [Google Scholar]
- Liu, B.; Zhang, X.; Tang, K.; Liu, M.; Liu, L. Spaceborne video-SAR moving target surveillance system. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2348–2351. [Google Scholar]
- Khosravi, M.R.; Samadi, S. Frame rate computing and aggregation measurement toward QoS/QoE in Video-SAR systems for UAV-borne real-time remote sensing. J. Supercomput. 2021, 77, 14565–14582. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, D. High-resolution miniature UAV SAR imaging based on GPU architecture. J. Phys. Conf. Ser. 2018, 1074, 012122. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, D.; Wang, D.; Du, W. FPGA implementation of SAR imaging processing system. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019; pp. 1–5. [Google Scholar]
- Linchen, Z.; Jindong, Z.; Daiyin, Z. FPGA implementation of polar format algorithm for airborne spotlight SAR processing. In Proceedings of the 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, Chengdu, China, 21–22 December 2013; pp. 143–147. [Google Scholar]
- Wang, D.; Zhu, D.; Liu, R. Video SAR high-speed processing technology based on FPGA. In Proceedings of the 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 6–8 May 2019; Volume 1, pp. 1–4. [Google Scholar]
Unit | # CLB LUTs | # CLB Registers | # DSPs | # Block RAMs | Max. Op. Freq. |
---|---|---|---|---|---|
SA-FFT | 99,610 | 21,921 | 78 | 12 | 150 MHz |
interpolation | 5722 | 2306 | 17 | - | 150 MHz |
Image Size | Execution Time (s) | Speedup Ratio (SW vs. HW) | |||
---|---|---|---|---|---|
Full SW | Interp. Accel. | FFT Accel. | Full HW | ||
1.732 | 1.654 | 0.124 | 0.046 | 37.393 | |
34.364 | 32.654 | 2.476 | 0.766 | 44.862 |
[52] | [53] | [54] | [55] | Proposed | |
---|---|---|---|---|---|
Platform | GPU | FPGA | FPGA | FPGA | FPGA |
Operating Freq. | 1.15 GHz | 200 MHz | 200 MHz | 200 MHz | 150 MHz |
Power (W) | 247 | - | - | - | 3.677 |
Image Size | |||||
Exec. Time (s) | 2.16 | 2.1 | 1 | 0.18 | 0.046 |
0.766 | |||||
(ns) | 64.373 | 250.339 | 59.604 | 42.915 | 175.476 |
182.629 | |||||
throughput (MB/s) | 62.14 | 15.98 | 67.11 | 93.21 | 22.79 |
21.91 | |||||
# CLB LUTs | - | 247,906 | 139,586 | 289,075 | 105,332 |
# CLB Registers | - | 433,200 | 196,258 | 360,486 | 24,227 |
# DSPs | - | 1093 | 811 | 1195 | 95 |
# Block RAMs | - | 1056 | 375 | 579 | 12 |
(ns) | - | 589.189 | 78.987 | 117.776 | 175.476 |
(ns) | - | 4476.281 | 482.839 | 638.554 | |
(ns) | - | 2880.216 | 508.829 | 539.826 | |
(ns) | - | 22,029.832 | 1862.625 | 2070.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.; Lee, M.; Lee, W.; Jung, Y. FPGA-Based Acceleration of Polar-Format Algorithm for Video Synthetic-Aperture Radar Imaging. Electronics 2024, 13, 2401. https://doi.org/10.3390/electronics13122401
Jeong D, Lee M, Lee W, Jung Y. FPGA-Based Acceleration of Polar-Format Algorithm for Video Synthetic-Aperture Radar Imaging. Electronics. 2024; 13(12):2401. https://doi.org/10.3390/electronics13122401
Chicago/Turabian StyleJeong, Dongmin, Myeongjin Lee, Wookyung Lee, and Yunho Jung. 2024. "FPGA-Based Acceleration of Polar-Format Algorithm for Video Synthetic-Aperture Radar Imaging" Electronics 13, no. 12: 2401. https://doi.org/10.3390/electronics13122401
APA StyleJeong, D., Lee, M., Lee, W., & Jung, Y. (2024). FPGA-Based Acceleration of Polar-Format Algorithm for Video Synthetic-Aperture Radar Imaging. Electronics, 13(12), 2401. https://doi.org/10.3390/electronics13122401