Improving the Efficiency of the Axial Flux Machine with Hybrid Excitation
Abstract
:1. Introduction
2. Description of the Machine
3. Results of Simulation Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsunata, R.; Takemoto, M.; Imai, J.; Saito, T.; Ueno, T. Comparison of Thermal Characteristics in Various Aspect Ratios for Radial-Flux and Axial-Flux Permanent Magnet Machines. IEEE Trans. Ind. Appl. 2023, 59, 3353–3367. [Google Scholar] [CrossRef]
- Patterson, D.J.; Colton, J.L.; Mularcik, B.; Kennedy, B.J.; Camilleri, S.; Rohoza, R. A comparison of radial and axial flux structures in electrical machines. In Proceedings of the IEEE International Conference on Electric Machines and Drives (IEMDC) 2009, Miami, FL, USA, 3–6 May 2009. [Google Scholar] [CrossRef]
- Cavagnino, A.; Lazzari, M.; Profumo, F.; Tenconi, A. A comparison between the axial flux and the radial flux structures for PM synchronous motors. IEEE Trans. Ind. Appl. 2002, 38, 1517–1524. [Google Scholar] [CrossRef]
- Parviainen, A.; Niemelä, M.; Pyrhönen, J.; Mantere, J. Performance comparison between low-speed axial-flux and radial-flux permanent-magnet machines including mechanical constraints. In Proceedings of the IEEE International Conference on Electric Machines and Drives 2005, San Antonio, TX, USA, 15 May 2005. [Google Scholar] [CrossRef]
- Tsunata, R.; Izumiya, K.; Takemoto, M.; Imai, J.; Saito, T.; Ueno, T. Designing and Prototyping an Axial-Flux Machine Using Ferrite PM and Round Wire for Traction Applications: Comparison with a Radial-Flux Machine Using Nd-Fe-B PM and Rectangular Wire. IEEE Trans. Ind. Appl. 2024, 60, 3934–3949. [Google Scholar] [CrossRef]
- Shao, L.; Navaratne, R.; Popescu, M.; Liu, G. Design and Construction of Axial-Flux Permanent Magnet Motors for Electric Propulsion Applications—A Review. IEEE Access 2021, 9, 158998–159017. [Google Scholar] [CrossRef]
- Nishanth, F.; Van Verdeghem, J.; Severson, E.L. A Review of Axial Flux Permanent Magnet Machine Technology. IEEE Trans. Ind. Appl. 2023, 59, 3920–3933. [Google Scholar] [CrossRef]
- Sitapati, K.; Krishnan, R. Performance comparisons of radial and axial field, permanent-magnet, brushless machines. IEEE Trans. Ind. Appl. 2001, 37, 1219–1226. [Google Scholar] [CrossRef]
- Huang, S.; Luo, J.; Lipo, T.A. A comparison of power density for axial flux machines based on general purpose sizing equations. IEEE Trans. Energy Convers. 1999, 14, 185–192. [Google Scholar] [CrossRef]
- Gieras, J.F.; Wang, R.J.; Kamper, M.J. Axial Flux Permanent Magnet Brushless Machines; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Giulii Capponi, F.; De Donato, G.; Caricchi, F. Recent Advances in Axial-Flux Permanent-Magnet Machine Technology. IEEE Trans. Ind. Appl. 2012, 48, 2190–2205. [Google Scholar] [CrossRef]
- Kim, D.H.; Choi, J.H.; Son, C.W.; Beak, Y.S. Theoretical analysis and experiments of axial flux pm motors with minimized cogging torque. J. Mech. Sci. Technol. 2010, 23, 335–343. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Li, P.-L.; Chuang, F.C.; Liu, C.-T.; Huang, K.-H. Optimization for Reduction of Torque Ripple in an Axial Flux Permanent Magnet Machine. IEEE Trans. Magn. 2009, 45, 1760–1763. [Google Scholar] [CrossRef]
- Paplicki, P.; Wardach, M.; Bonislawski, M.; Palka, R. Simulation and experimental results of hybrid electric machine with a novel flux control strategy. Arch. Electr. Eng. 2015, 64, 37–51. [Google Scholar] [CrossRef]
- Wardach, M.; Palka, R.; Paplicki, P.; Prajzendanc, P.; Zarebski, T. Modern Hybrid Excited Electric Machines. Energies 2020, 13, 5910. [Google Scholar] [CrossRef]
- Wardach, M.; Bonislawski, M.; Palka, R.; Paplicki, P.; Prajzendanc, P. Hybrid excited synchronous machine with wireless supply control system. Energies 2019, 12, 3153. [Google Scholar] [CrossRef]
- Wardach, M.; Paplicki, P.; Palka, R. A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges. Energies 2018, 11, 676. [Google Scholar] [CrossRef]
- Hou, J.; Geng, W.; Zhu, T.; Zhang, Y.; Li, Q.; Zhang, Z. A New Hybrid Excitation Machine with Dual-Stator Single-Rotor Axial-Flux Topology for Electric Vehicle Traction Application. In Proceedings of the 24th International Conference on Electrical Machines and Systems (ICEMS) 2021, Gyeongju, Republic of Korea, 31 October–3 November 2021. [Google Scholar] [CrossRef]
- Polikarpova, M.; Ponomarev, P.; Lindh, P.; Petrov, I.; Jara, W.; Naumanen, V.; Tapia, J.A.; Pyrhönen, J. Hybrid Cooling Method of Axial-Flux Permanent-Magnet Machines for Vehicle Applications. IEEE Trans. Ind. Electron. 2015, 62, 7382–7390. [Google Scholar] [CrossRef]
- Hoang, E.; Lecrivain, M.; Gabsi, M. 3-D thermal model of an hybrid excitation flux switching synchronous machine using a 2-D FE method software. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2010, Pisa, Italy, 14–16 June 2010. [Google Scholar] [CrossRef]
- Xu, X.; Han, Q. A general electromagnetic model and vibration control for shape deviations in PMSM supported by three-pole active magnetic bearings. Mech. Syst. Signal Process. 2021, 158, 107710. [Google Scholar] [CrossRef]
- Zeng, Z.; Shen, Y.; Yang, G.; Lee, C.H.T. Investigation of a Novel Brushless Dual-Electric-Port Machine with AC Flux-Control Property for EV/HEV Applications. IEEE Trans. Transp. Electrif. 2024, 60, 1365–1373. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, M.; Xu, D.; Hao, L.; Zhang, W. Vector Control of a Hybrid Axial Field Flux-Switching Permanent Magnet Machine Based on Particle Swarm Optimization. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Kwon, H. Control Map Generation Strategy for Hybrid Electric Vehicles Based on Machine Learning with Energy Optimization. IEEE Access 2022, 10, 15163–15174. [Google Scholar] [CrossRef]
- Ding, W.; Liu, G.; Li, P. A Hybrid Control Strategy of Hybrid-Excitation Switched Reluctance Motor for Torque Ripple Reduction and Constant Power Extension. IEEE Trans. Ind. Electron. 2020, 67, 38–48. [Google Scholar] [CrossRef]
- Prajzendanc, P.; Paplicki, P. Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design. Energies 2022, 15, 2733. [Google Scholar] [CrossRef]
- Paplicki, P. Modified concept of axial-flux permanent magnet machine with field weakening capability. Arch. Electr. Eng. 2014, 63, 177–185. [Google Scholar] [CrossRef]
- Aydin, M.; Zhu, Z.Q.; Lipo, T.A. Minimization of Cogging Torque in Axial-Flux Permanent-Magnet Machines: Design Concepts. IEEE Trans. Magn. 2007, 43, 3614–3622. [Google Scholar] [CrossRef]
- Saygin, A.; Aksöz, A. Design Optimization for Minimizing Cogging Torque in Axial Flux Permanent Magnet Machines. In Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 25–27 May 2017; pp. 324–329. [Google Scholar] [CrossRef]
- Girgin, M.T.; Aydin, M. Elimination of Cogging Torque for Axial Flux Permanent Magnet Motors Based on Current Harmonic Injection. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 23–26 August 2020; pp. 1117–1122. [Google Scholar] [CrossRef]
- Adase, L.A.; Alsofyani, I.M.; Lee, K.-B. Predictive Torque Control with Simple Duty-Ratio Regulator of PMSM for Minimizing Torque and Flux Ripples. IEEE Access 2020, 8, 2373–2381. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Yu, L.; Bian, Z. An Improved Direct Instantaneous Torque Control of Doubly Salient Electromagnetic Machine for Torque Ripple Reduction. IEEE Trans. Ind. Electron. 2021, 68, 6481–6492. [Google Scholar] [CrossRef]
- Ye, J.; Bilgin, B.; Emadi, A. An Offline Torque Sharing Function for Torque Ripple Reduction in Switched Reluctance Motor Drives. IEEE Trans. Energy Convers. 2015, 30, 726–735. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Choi, H.H.; Jung, J.-W. Feedback Linearization Direct Torque Control with Reduced Torque and Flux Ripples for IPMSM Drives. IEEE Trans. Power Electron. 2016, 31, 3728–3737. [Google Scholar] [CrossRef]
- Paplicki, P.; Prajzendanc, P.; Wardach, M.; Pałka, R.; Cierzniewski, K.; Pstrokoński, R. Influence of Geometry of Iron Poles on the Cogging Torque of a Field Control Axial Flux Permanent Magnet Machine. Int. J. Appl. Electromagn. Mech. 2022, 69, 179–188. [Google Scholar] [CrossRef]
Parameters | Value | |
---|---|---|
Stator | Stator outer diameter | 300 mm |
Stator inner diameter | 190 mm | |
Number of stator pole pairs | 6 | |
Number of stator phases | 3 | |
Number of turns in each phase coil | 150 | |
Rotor | Number of iron poles on each rotor disc | 6 |
Number of permanent magnets on each rotor disc | 6 | |
Dimensions of permanent magnets | 50 × 50 × 12 mm | |
Permanent magnets type | N38H | |
Bushing inner diameter | 50 mm | |
Axial length of the machine | 170 mm |
Part Name | |||
---|---|---|---|
iron poles | 18 164 | 31 995 | 30 039 |
permanent magnets | 12 193 | 27 222 | 27 977 |
stator core | 46 690 | 96 184 | 96 701 |
rotor discs | 13 209 | 21 602 | 20 757 |
bushing | 2 933 | 5 727 | 5 518 |
[Nm] | 213.05 | 139.41 | 129.27 |
[Nm] | 104.27 | 101.32 | 97.76 |
[Nm] | 160.53 | 121.04 | 113.88 |
Pulsations [%] | 68 | 31 | 28 |
[Nm] | 191.77 | 133.47 | 124.23 |
[Nm] | 127.98 | 106.59 | 101.87 |
[Nm] | 158.35 | 119.28 | 112.37 |
Pulsations [%] | 40 | 23 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prajzendanc, P.; Palka, R.; Paplicki, P.; Wardach, M.; Cichowicz, M.; Cierzniewski, K.; Dorobczynski, L.; Gundabattini, E. Improving the Efficiency of the Axial Flux Machine with Hybrid Excitation. Electronics 2024, 13, 2219. https://doi.org/10.3390/electronics13112219
Prajzendanc P, Palka R, Paplicki P, Wardach M, Cichowicz M, Cierzniewski K, Dorobczynski L, Gundabattini E. Improving the Efficiency of the Axial Flux Machine with Hybrid Excitation. Electronics. 2024; 13(11):2219. https://doi.org/10.3390/electronics13112219
Chicago/Turabian StylePrajzendanc, Pawel, Ryszard Palka, Piotr Paplicki, Marcin Wardach, Michal Cichowicz, Kamil Cierzniewski, Lech Dorobczynski, and Edison Gundabattini. 2024. "Improving the Efficiency of the Axial Flux Machine with Hybrid Excitation" Electronics 13, no. 11: 2219. https://doi.org/10.3390/electronics13112219
APA StylePrajzendanc, P., Palka, R., Paplicki, P., Wardach, M., Cichowicz, M., Cierzniewski, K., Dorobczynski, L., & Gundabattini, E. (2024). Improving the Efficiency of the Axial Flux Machine with Hybrid Excitation. Electronics, 13(11), 2219. https://doi.org/10.3390/electronics13112219