Evaluating Visual Dependence in Postural Stability Using Smartphone and Stroboscopic Glasses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horak, F.B.; Macpherson, J.M. Postural Orientation and Equilibrium. In Comprehensive Physiology; Springer: Berlin/Heidelberg, Germany, 1996; pp. 255–292. [Google Scholar]
- Honeine, J.-L.; Schieppati, M. Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions. Front. Syst. Neurosci. 2014, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, L.; Yang, S.-N.; Wang, H.; Yao, J.; Dai, Q.; Chang, S. Contributions of Visuo-oculomotor Abilities to Interceptive Skills in Sports. Optom. Vis. Sci. 2015, 92, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Laby, D.M.; Appelbaum, L.G. Review: Vision and On-field Performance: A Critical Review of Visual Assessment and Training Studies with Athletes. Optom. Vis. Sci. 2021, 98, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Han, S.; Hopkins, J.T. Altered Visual Reliance Induced by Stroboscopic Glasses during Postural Control. Int. J. Environ. Res. Public Health 2022, 19, 2076. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Burcal, C.J.; Hertel, J.A.Y.; Wikstrom, E.A. Increased Visual Use in Chronic Ankle Instability. Med. Sci. Sports Exerc. 2016, 48, 2046–2056. [Google Scholar] [CrossRef] [PubMed]
- Sahin-Uysal, H.; Ojeda Aravena, A.; Ulas, M.; Baez-San Martín, E.; Ramirez-Campillo, R. Validity, Reliability, and Sensitivity of Mobile Applications to Assess Change of Direction Speed. J. Hum. Kinet. 2023, 87, 217. [Google Scholar] [CrossRef] [PubMed]
- Caccese, J.B.; Santos, F.V.; Yamaguchi, F.K.; Buckley, T.A.; Jeka, J.J. Persistent Visual and Vestibular Impairments for Postural Control Following Concussion: A Cross-Sectional Study in University Students. Sports Med. 2021, 51, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Danna-Dos-Santos, A.; Driusso, P.; Degani, A.M. Long-term effects of mTBIs includes a higher dependency on visual inputs to control vertical posture. Brain Inj. 2022, 37, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, L.; Appelbaum, L.G. An early review of stroboscopic visual training: Insights, challenges and accomplishments to guide future studies. Int. Rev. Sport Exerc. Psychol. 2019, 13, 65–80. [Google Scholar] [CrossRef]
- Appelbaum, L.G.; Erickson, G. Sports vision training: A review of the state-of-the-art in digital training techniques. Int. Rev. Sport Exerc. Psychol. 2016, 11, 160–189. [Google Scholar] [CrossRef]
- Kim, K.-M.; Kim, J.-S.; Grooms, D.R. Stroboscopic Vision to Induce Sensory Reweighting During Postural Control. J. Sport Rehabil. 2017, 26. [Google Scholar] [CrossRef]
- Jang, J.; Knarr, B.A.; Rosen, A.B.; Burcal, C.J. Visual reweighting using stroboscopic vision in healthy individuals. J. Kinesiol. Wellness 2022, 11, 1–11. [Google Scholar] [CrossRef]
- Nashner, L.; Berthoz, A. Visual contribution to rapid motor responses during postural control. Brain Res. 1978, 150, 403–407. [Google Scholar] [CrossRef]
- Assländer, L.; Hettich, G.; Mergner, T. Visual contribution to human standing balance during support surface tilts. Hum. Mov. Sci. 2015, 41, 147–164. [Google Scholar] [CrossRef]
- Pletcher, E.R.; Williams, V.J.; Abt, J.P.; Morgan, P.M.; Parr, J.J.; Wohleber, M.F.; Lovalekar, M.; Sell, T.C. Normative Data for the NeuroCom Sensory Organization Test in US Military Special Operations Forces. J. Athl. Train 2017, 52, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Heick, J.D.; Alkathiry, A. Impact of Concussions on Postural Stability Performance Using the Head Shake-Sensory Organization Test. Int. J. Sports Phys. Ther. 2024, 19, 1454. [Google Scholar] [CrossRef]
- Mucha, A.; Collins, M.W.; Elbin, R.J.; Furman, J.M.; Troutman-Enseki, C.; DeWolf, R.M.; Marchetti, G.; Kontos, A.P. A Brief Vestibular/Ocular Motor Screening (VOMS) Assessment to Evaluate Concussions. Am. J. Sports Med. 2014, 42, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M.; Kim, J.-S.; Oh, J.; Grooms, D.R. Stroboscopic Vision as a Dynamic Sensory Reweighting Alternative to the Sensory Organization Test. J. Sport Rehabil. 2021, 30, 166–172. [Google Scholar] [CrossRef]
- Soangra, R.; Lockhart, T. Smartphone-Based Prediction Model for Postoperative Cardiac Surgery Outcomes Using Preoperative Gait and Posture Measures. Sensors 2021, 21, 1704. [Google Scholar] [CrossRef]
- Pollind, M.L.; Soangra, R. Mini-Logger-A Wearable Inertial Measurement Unit (IMU) for Postural Sway Analysis. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4600–4603. [Google Scholar]
- Pollind, M.; Soangra, R. Development and Validation of Wearable Inertial Sensor System for Postural Sway Analysis. Measurement 2020, 165, 108101. [Google Scholar] [CrossRef]
- Soangra, R.; Lockhart, T.E. Inertial Sensor-Based Variables Are Indicators of Frailty and Adverse Post-Operative Outcomes in Cardiovascular Disease Patients. Sensors 2018, 18, 1792. [Google Scholar] [CrossRef] [PubMed]
- Soangra, R.; Lockhart, T.E. Agreement in gait speed from smartphone and stopwatch for five meter walk in laboratory and clinical environments. BioMed Sci. Instrum. 2014, 50, 254–264. [Google Scholar] [PubMed]
- Harper, B.A.; Shiraisshi, M.; Soangra, R. Investigating Agreement and Reliability of Mobile Health App for Continuous Walking on a Figure-Eight Path with Periodic Vision Interruptions. In Proceedings of the 2023 International Conference on Next Generation Electronics (NEleX), Tamil Nadu, India, 14–16 December 2023; pp. 1–5. [Google Scholar]
- Mayagoitia, R.E.; Lotters, J.C.; Veltink, P.H.; Hermens, H. Standing balance evaluation using a triaxial accelerometer. Gait Posture 2002, 16, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Broglio, S.P.; Guskiewicz, K.M. Concussion in sports: The sideline assessment. Sports Health 2009, 1, 361–369. [Google Scholar] [CrossRef] [PubMed]
- McCrea, M.; Barr, W.B.; Guskiewicz, K.; Randolph, C.; Marshall, S.W.; Cantu, R.; Onate, J.A.; Kelly, J.P. Standard regression-based methods for measuring recovery after sport-related concussion. J. Int. Neuropsychol. Soc. 2005, 11, 58–69. [Google Scholar] [CrossRef] [PubMed]
- McCrea, M.; Hammeke, T.; Olsen, G.; Leo, P.; Guskiewicz, K. Unreported Concussion in High School Football Players. Clin. J. Sport Med. 2004, 14, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Massingale, S.; Alexander, A.; Erickson, S.; McQueary, E.; Gerkin, R.; Kisana, H.; Silvestri, B.; Schodrof, S.; Nalepa, B.; Pardini, J. Comparison of Uninjured and Concussed Adolescent Athletes on the Concussion Balance Test (COBALT). J. Neurol. Phys. Ther. 2018, 42, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Furman, J.M. Posturography: Uses and limitations. Baillieres Clin. Neurol. 1994, 3, 501–513. [Google Scholar]
- Lacour, M.; Barthelemy, J.; Borel, L.; Magnan, J.; Xerri, C.; Chays, A.; Ouaknine, M. Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Exp. Brain Res. 1997, 115, 300–310. [Google Scholar] [CrossRef]
- Isableu, B.; Ohlmann, T.; Crémieux, J.; Amblard, B. Differential approach to strategies of segmental stabilisation in postural control. Exp. Brain Res. 2003, 150, 208–221. [Google Scholar] [CrossRef]
- Tjernström, F.; Björklund, M.; Malmström, E.-M. Romberg ratio in quiet stance posturography—Test to retest reliability. Gait Posture 2015, 42, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Kontos, A.P.; Elbin, R.J.; Schatz, P.; Covassin, T.; Henry, L.; Pardini, J.; Collins, M.W. A Revised Factor Structure for the Post-Concussion Symptom Scale. Am. J. Sports Med. 2012, 40, 2375–2384. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.; Lifshitz, J. Traumatic brain injury and vestibulo-ocular function: Current challenges and future prospects. Eye Brain 2016, 8, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Miner, D.; Harper, B.A.; Glass, S.; Martin, B.; Polizotto, M.; Hearl, S.M.; Turner, E.; Brunelli, S. Test-Retest Reliability of Postural Control Assessment on Biodex BioSwayTM. BioMed Res. Int. 2022, 2022, 7959830. [Google Scholar] [CrossRef]
- Miner, D.G.; Harper, B.A.; Glass, S.M. Validity of Postural Sway Assessment on the Biodex BioSway™ Compared With the NeuroCom Smart Equitest. J. Sport Rehabil. 2021, 30, 516–520. [Google Scholar] [CrossRef]
Measure | Description | Formula |
---|---|---|
Sway AP | The range of CoP movement in the anterior-posterior direction | |
Sway ML | The range of CoP movement in the medial lateral direction | |
Sway Path | The trajectory of the resultant CoP sway in the anterior-posterior and medial-lateral directions. Or path of resultant COP. | |
Sway Velocity | The average speed of CoP sway | |
Sway Area | The area of smallest ellipse that encompasses 95% of the CoP sway | |
Turn Index | ||
RMS AP | Root mean square of CoP in the anterior-posterior direction | |
RMS ML | Root mean square of CoP in the medial-lateral direction | |
MPF AP | The median power frequency of the anterior-posterior CoP, calculated by using Welch’s averaged periodogram method. | |
MPF ML | The median power frequency of the medial-lateral CoP, calculated by using Welch’s averaged periodogram method. | |
F50 AP | The median frequency of 50% power spectrum density in the anterior-posterior CoP | |
F50 ML | The median frequency of 50% power spectrum density in the medial-lateral CoP | |
F95 AP | The median frequency of 95% power spectrum density in the anterior-posterior CoP | |
F95 ML | The median frequency of 95% power spectrum density in the medial-lateral CoP | |
Fpeak_AP | Frequency with maximum power in the anterior-posterior direction | |
FPeak_ML | Frequency with maximum power in the medial-lateral direction | |
FD | The dominant frequency in the frequency spectrum with maximum power |
Force plate | Smartphone | |||||
---|---|---|---|---|---|---|
EC | EO | Strobe | EC | EO | Strobe | |
Sway AP [m] | 0.0363 ± 0.008 | 0.0193 ± 0.0052 | 0.031 ± 0.0081 | 0.0742 ± 0.0166 | 0.0534 ± 0.0205 | 0.0719 ± 0.039 |
Sway ML [m] | 0.0494 ± 0.0091 | 0.0248 ± 0.0077 | 0.0472 ± 0.0113 | 0.0851 ± 0.0262 | 0.0545 ± 0.0176 | 0.0712 ± 0.0156 |
Sway Path [m] | 1.0723 ± 0.1653 | 0.8257 ± 0.101 | 0.9998 ± 0.1056 | 8.4936 ± 2.6438 | 6.4762 ± 1.6354 | 7.9953 ± 2.2316 |
Sway Velocity [m/s2] | 0.1072 ± 0.0165 | 0.0826 ± 0.0101 | 0.1 ± 0.0106 | 0.0149 ± 0.0051 | 0.0096 ± 0.0027 | 0.0128 ± 0.003 |
Sway Area [m2] | 0.0012 ± 0.0004 | 0.0004 ± 0.0002 | 0.0011 ± 0.0005 | 0.0026 ± 0.0014 | 0.0011 ± 0.0005 | 0.0021 ± 0.0009 |
Turn Index | 136.71 ± 28.423 | 207.3 ± 55.078 | 141.62 ± 29.815 | 780.47 ± 222.02 | 904.44 ± 250.86 | 808.24 ± 233.28 |
RMS AP [m] | 0.0071 ± 0.0014 | 0.004 ± 0.0015 | 0.0062 ± 0.0016 | 0.0103 ± 0.0022 | 0.0068 ± 0.0017 | 0.0094 ± 0.0025 |
RMS ML [m] | 0.0097 ± 0.0024 | 0.0051 ± 0.0016 | 0.0096 ± 0.0028 | 0.0137 ± 0.0062 | 0.0089 ± 0.0034 | 0.0117 ± 0.0031 |
MPF AP [Hz] | 0.9087 ± 0.3373 | 0.8209 ± 0.4092 | 0.8862 ± 0.2835 | 2.5007 ± 1.2067 | 3.0677 ± 1.3377 | 2.5996 ± 1.1519 |
MPF ML [Hz] | 0.8661 ± 0.3018 | 0.6574 ± 0.1885 | 0.7806 ± 0.2927 | 1.4827 ± 0.9675 | 1.8855 ± 1.0997 | 1.6062 ± 0.8632 |
F50 AP [Hz] | 0.7748 ± 0.3299 | 0.7082 ± 0.4825 | 0.7748 ± 0.3299 | 1.0476 ± 1.2431 | 0.9741 ± 1.2321 | 0.8162 ± 0.8161 |
F50 ML [Hz] | 0.7248 ± 0.3577 | 0.5249 ± 0.1539 | 0.6999 ± 0.3175 | 0.2858 ± 0.1762 | 0.2585 ± 0.2182 | 0.2776 ± 0.1406 |
F95 AP [Hz] | 2.4827 ± 0.7074 | 2.3077 ± 0.7975 | 2.4245 ± 0.6305 | 10.103 ± 2.5289 | 12.059 ± 3.1484 | 10.483 ± 2.4206 |
F95 ML [Hz] | 2.5827 ± 0.556 | 2.0828 ± 0.5238 | 2.1662 ± 0.4114 | 7.9634 ± 5.0773 | 10.567 ± 4.8295 | 9.0345 ± 4.3526 |
Fpeak AP [Hz] | 0.3249 ± 0.3325 | 0.4832 ± 0.5805 | 0.4082 ± 0.3462 | 0.1307 ± 0.168 | 0.1225 ± 0.2329 | 0.1905 ± 0.1774 |
FPeak ML [Hz] | 0.3666 ± 0.3157 | 0.2249 ± 0.1799 | 0.4666 ± 0.4028 | 0.0953 ± 0.0816 | 0.098 ± 0.0963 | 0.1088 ± 0.0875 |
FD [Hz] | 0.9756 ± 0.0099 | 0.9925 ± 0.0046 | 0.9794 ± 0.0069 | 0.9659 ± 0.0132 | 0.9634 ± 0.0143 | 0.9629 ± 0.0117 |
Force plate | Smartphone | |||
---|---|---|---|---|
VMS EO | VMS Strobe | VMS EO | VMS Strobe | |
Sway AP [m] | 0.0501 ± 0.0144 | 0.0816 ± 0.0137 | 0.2843 ± 0.0478 | 0.3393 ± 0.0693 |
Sway ML [m] | 0.0481 ± 0.0125 | 0.0787 ± 0.0207 | 0.1288 ± 0.0264 | 0.1533 ± 0.0394 |
Sway Path [m] | 1.2484 ± 0.2483 | 1.804 ± 0.338 | 20.176 ± 5.1712 | 26.018 ± 7.4693 |
Sway Velocity [m/s2] | 0.1248 ± 0.0248 | 0.1804 ± 0.0338 | 0.0608 ± 0.0112 | 0.0641 ± 0.0141 |
Sway Area [m2] | 0.0019 ± 0.001 | 0.0045 ± 0.0017 | 0.0245 ± 0.0082 | 0.0303 ± 0.0125 |
Turn Index | 130.58 ± 18.199 | 117.35 ± 15.652 | 646.83 ± 189.34 | 733.48 ± 204.9 |
RMS AP [m] | 0.01 ± 0.0029 | 0.0162 ± 0.0028 | 0.0638 ± 0.0106 | 0.0686 ± 0.0146 |
RMS ML [m] | 0.0097 ± 0.0028 | 0.0149 ± 0.0035 | 0.0211 ± 0.0051 | 0.0235 ± 0.0053 |
MPF AP [Hz] | 1.034 ± 0.2083 | 1.0042 ± 0.2193 | 0.7245 ± 0.2049 | 0.8697 ± 0.2923 |
MPF ML [Hz] | 0.7776 ± 0.2177 | 0.9554 ± 0.2276 | 2.3554 ± 1.0812 | 2.5878 ± 0.9779 |
F50 AP [Hz] | 0.8498 ± 0.1474 | 0.8665 ± 0.218 | 0.3974 ± 0.0267 | 0.3865 ± 0.0267 |
F50 ML [Hz] | 0.6165 ± 0.1551 | 0.7665 ± 0.268 | 0.6342 ± 0.1028 | 0.626 ± 0.161 |
F95 AP [Hz] | 3.1159 ± 0.7731 | 2.9243 ± 0.664 | 2.8196 ± 2.0994 | 4.142 ± 2.6235 |
F95 ML [Hz] | 2.3744 ± 0.7626 | 2.8993 ± 0.6619 | 11.708 ± 5.3354 | 12.801 ± 4.6647 |
Fpeak AP [Hz] | 0.4666 ± 0.2548 | 0.5665 ± 0.436 | 0.3266 ± 0.0003 | 0.3239 ± 0.0134 |
FPeak ML [Hz] | 0.3416 ± 0.1998 | 0.4666 ± 0.337 | 0.4518 ± 0.2757 | 0.4545 ± 0.2595 |
FD [Hz] | 0.9698 ± 0.0106 | 0.9536 ± 0.0099 | 0.9687 ± 0.0079 | 0.9654 ± 0.0072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, B.A.; Shiraishi, M.; Soangra, R. Evaluating Visual Dependence in Postural Stability Using Smartphone and Stroboscopic Glasses. Electronics 2024, 13, 2166. https://doi.org/10.3390/electronics13112166
Harper BA, Shiraishi M, Soangra R. Evaluating Visual Dependence in Postural Stability Using Smartphone and Stroboscopic Glasses. Electronics. 2024; 13(11):2166. https://doi.org/10.3390/electronics13112166
Chicago/Turabian StyleHarper, Brent A., Michael Shiraishi, and Rahul Soangra. 2024. "Evaluating Visual Dependence in Postural Stability Using Smartphone and Stroboscopic Glasses" Electronics 13, no. 11: 2166. https://doi.org/10.3390/electronics13112166
APA StyleHarper, B. A., Shiraishi, M., & Soangra, R. (2024). Evaluating Visual Dependence in Postural Stability Using Smartphone and Stroboscopic Glasses. Electronics, 13(11), 2166. https://doi.org/10.3390/electronics13112166