Mapping the Emergent Trends in Industrial Augmented Reality
Abstract
:1. Introduction
2. Materials and Methods
- Average growth rate (AGR)—the average difference between the number of papers published in one year and the number of papers published the year before;
- Average documents per year (ADY)—the average number of papers published within a timeframe for the selected topic;
- Percentage of documents in last years (PDLY)—the ratio between the ADY and the total number of papers for a certain topic;
- h-Index of each topic—ScientoPy determines the h-index of each topic for different categories, such as authors, countries, institutions, etc.
- Publication type: books, book chapters, notes, and editorials were excluded;
- Publication date: publications outside the 2018–2022 timeframe were excluded;
- Duplicate publications: duplicate publications are excluded to avoid double-counting;
- Irrelevant topics: articles that are not relevant to the research question or objectives were excluded.
3. Results
3.1. Industry 4.0
3.2. Artificial Intelligence
3.3. Smart Manufacturing
3.4. Human–Robot Interaction
3.5. Digital Twin
3.6. Assembly
3.7. Internet of Things
3.8. Visualization
3.9. Maintenance
3.10. Training
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, S.; Park, J.-S. Development of Augmented Reality System for Productivity Enhancement in Offshore Plant Construction. J. Mar. Sci. Eng. 2021, 9, 209. [Google Scholar] [CrossRef]
- Dalle Mura, M.; Dini, G. Augmented Reality in Assembly Systems: State of the Art and Future Perspectives. In Proceedings of the Smart Technologies for Precision Assembly, Cham, Switzerland, 14–15 December 2020; pp. 3–22. [Google Scholar]
- Smith, E.; Semple, G.; Evans, D.; McRae, K.; Blackwell, P. Augmented Instructions: Analysis of Performance and Efficiency of Assembly Tasks. Virtual, Augmented and Mixed Reality. Industrial and Everyday Life Applications. In Proceedings of the 12th International Conference, VAMR 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; pp. 166–177. [Google Scholar]
- Vidal-Balea, A.; Blanco-Novoa, O.; Fraga-Lamas, P.; Vilar-Montesinos, M.; Fernández-Caramés, T.M. Creating Collaborative Augmented Reality Experiences for Industry 4.0 Training and Assistance Applications: Performance Evaluation in the Shipyard of the Future. Appl. Sci. 2020, 10, 9073. [Google Scholar] [CrossRef]
- Osman, S.; Phon, D.; Omar, N.; Mohd Rameli, M.R.; Ahmad, N.; Gusman, T. Using Augmented Reality Application to Reduce Time Completion and Error Rate in PC Assembly. JOIV Int. J. Inform. Vis. 2020, 4, 166. [Google Scholar] [CrossRef]
- Tatic, D. An augmented reality system for improving health and safety in the electro-energetics industry. Facta Univ.-Ser. Electron. Energetics 2018, 31, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Hou, L.; Zhang, G.; Chen, H. Real-time mixed reality-based visual warning for construction workforce safety. Autom. Constr. 2022, 139, 104252. [Google Scholar] [CrossRef]
- Tatić, D.; Tešić, B. The application of augmented reality technologies for the improvement of occupational safety in an industrial environment. Comput. Ind. 2017, 85, 1–10. [Google Scholar] [CrossRef]
- Sorko, S.R.; Brunnhofer, M. Potentials of Augmented Reality in Training. Procedia Manuf. 2019, 31, 85–90. [Google Scholar] [CrossRef]
- Villagran-Vizcarra, D.C.; Luviano-Cruz, D.; Pérez-Domínguez, L.A.; Méndez-González, L.C.; Garcia-Luna, F. Applications Analyses, Challenges and Development of Augmented Reality in Education, Industry, Marketing, Medicine, and Entertainment. Appl. Sci. 2023, 13, 2766. [Google Scholar] [CrossRef]
- Tortorella, G.; Fogliatto, F.; Anzanello, M.; Vassolo, R.; Antony, J.; Otto, K.; Kagioglou, M. Learning Curve Applications in Industry 4.0: A scoping review. Prod. Plan. Control 2022, 1–13. [Google Scholar] [CrossRef]
- Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Rosero, J.; Ramírez-González, G.; Viveros-Delgado, J. Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics 2019, 121, 1165–1188. [Google Scholar] [CrossRef]
- Munoz-Ausecha, C.; Ruiz-Rosero, J.; Ramirez-Gonzalez, G. RFID applications and security review. Computation 2021, 9, 69. [Google Scholar]
- Calış Duman, M.; Akdemir, B. A study to determine the effects of industry 4.0 technology components on organizational performance. Technol. Forecast. Soc. Chang. 2021, 167, 120615. [Google Scholar] [CrossRef]
- Carou, D. Aerospace Transformation through Industry 4.0 Technologies. In Aerospace and Digitalization: A Transformation Through Key Industry 4.0 Technologies; Carou, D., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 17–46. [Google Scholar]
- Dal Forno, A.J.; Bataglini, W.V.; Steffens, F.; Ulson de Souza, A.A. Industry 4.0 in textile and apparel sector: A systematic literature review. Res. J. Text. Appar. 2023, 27, 95–117. [Google Scholar] [CrossRef]
- Echegaray, N.; Hassoun, A.; Jagtap, S.; Tetteh-Caesar, M.; Kumar, M.; Tomasevic, I.; Goksen, G.; Lorenzo, J.M. Meat 4.0: Principles and Applications of Industry 4.0 Technologies in the Meat Industry. Appl. Sci. 2022, 12, 6986. [Google Scholar] [CrossRef]
- Watson, A.; Alexander, B.; Salavati, L. The impact of experiential augmented reality applications on fashion purchase intention. Int. J. Retail Distrib. Manag. 2018, 48, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Reljic, V.; Milenkovic, I.; Dudić, S.; Šulc, J.; Bajci, B. Augmented Reality Applications in Industry 4.0 Environment. Appl. Sci. 2021, 11, 5592. [Google Scholar] [CrossRef]
- Damiani, L.; Revetria, R.; Morra, E. Safety in Industry 4.0: The Multi-Purpose Applications of Augmented Reality in Digital Factories. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Kan, H.C.; Lu, J.M.; Yao, C.M.; Liao, Y.C.; Chung, C.H.; Shih, K.C.; Tsai, M.C. Integration of intelligent diagnosis system and augmented reality for electric motors. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1113, 012023. [Google Scholar] [CrossRef]
- Dhar, P.; Rocks, T.; Samarasinghe, R.M.; Stephenson, G.; Smith, C. Augmented reality in medical education: Students’ experiences and learning outcomes. Med. Educ. Online 2021, 26, 1953953. [Google Scholar] [CrossRef]
- Nassereddine, H.; Hanna, A.; Veeramani, D.; Lotfallah, W. Augmented Reality in the Construction Industry: Use-Cases, Benefits, Obstacles, and Future Trends. Front. Built Environ. 2022, 8, 1–17. [Google Scholar] [CrossRef]
- Bajic, B.; Rikalovic, A.; Suzic, N.; Piuri, V. Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective. IEEE Syst. J. 2021, 15, 546–559. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput.-Integr. Manuf. 2019, 58, 181–195. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented Reality: Focusing on Photonics in Industry 4.0. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–11. [Google Scholar] [CrossRef]
- Ottogalli, K.; Rosquete, D.; Amundarain, A.; Aguinaga, I.; Borro, D. Flexible Framework to Model Industry 4.0 Processes for Virtual Simulators. Appl. Sci. 2019, 9, 4983. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.; Exposito, E.; Aguilar, J. Industry 4.0: Survey from a system integration perspective. Int. J. Comput. Integr. Manuf. 2020, 33, 1017–1041. [Google Scholar] [CrossRef]
- Simões, B.; De Amicis, R.; Barandiaran, I.; Posada, J. X-Reality System Architecture for Industry 4.0 Processes. Multimodal Technol. Interact. 2018, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Jakl, A.; Schöffer, L.; Husinsky, M.; Wagner, M. Augmented Reality for Industry 4.0: Architecture and User Experience. In Proceedings of the 11th Forum Media Technology, St. Pölten, Austria, 28–29 November 2018. [Google Scholar]
- Zakoldaev, D.A.; Gurjanov, A.V.; Shukalov, A.V.; Zharinov, I.O. Implementation of H2M technology and augmented reality for operation of cyber-physical production of the Industry 4.0. J. Phys. Conf. Ser. 2019, 1353, 012142. [Google Scholar] [CrossRef]
- Geng, R.; Li, M.; Hu, Z.; Han, Z.; Zheng, R. Digital Twin in smart manufacturing: Remote control and virtual machining using VR and AR technologies. Struct. Multidiscip. Optim. 2022, 65, 321. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Zhang, Z.; Chen, Z.; Shi, Q.; Shan, X.; Yeow, R.C.-H.; Lee, C. Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Self-Powered Sensor Enhanced Soft Robotic Manipulator. Adv. Sci. 2021, 8, 2100230. [Google Scholar] [CrossRef]
- Dou, W.; Tian, Y.; Ye, G.; Zhu, J. Antenna Artificial Intelligence: The Relentless Pursuit of Intelligent Antenna Design [Industry Activities]. IEEE Antennas Propag. Mag. 2022, 64, 128–130. [Google Scholar] [CrossRef]
- Wittenberg, C. Challenges for the human-machine interaction in times of digitization, CPS & IIoT, and artificial intelligence in production systems. IFAC-Pap. 2022, 55, 114–119. [Google Scholar] [CrossRef]
- Olaniyan, O.T.; Adetunji, C.O.; Dare, A.; Adeyomoye, O.; Adeniyi, M.J.; Enoch, A. Chapter 12-Cognitive therapy for brain diseases using artificial intelligence models. In Artificial Intelligence for Neurological Disorders; Abraham, A., Dash, S., Pani, S.K., García-Hernández, L., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 185–207. [Google Scholar]
- Vijayakumar, P.; Dilliraj, E. A Comparative Review on Image Analysis with Machine Learning for Extended Reality (XR) Applications. In Ubiquitous Intelligent Systems, Proceedings of the International Conference on Ubiquitous Computing and Intelligent Information Systems, Singapore, 16–17 April 2021; pp. 307–328. [Google Scholar]
- Sun, H.; Kim, K. Design of Glasses Products Based on Artificial Intelligence. In Cyber Security Intelligence and Analytics, Proceedings of the 2020 International Conference on Cyber Security Intelligence and Analytics (CSIA 2020), Haikou, China, 28–29 February 2020; pp. 1051–1058. [Google Scholar]
- Lashin, M.; Malibari, A. Using Fuzzy Logic Control System as an Artificial Intelligence Tool to Design Soap Bubbles Robot as a Type of Interactive Games. Inf. Sci. Lett. 2022, 11, 15–19. [Google Scholar] [CrossRef]
- Durchon, H.; Preda, M.; Zaharia, T.; Grall, Y. Challenges in Applying Deep Learning to Augmented Reality for Manufacturing. In Proceedings of the 27th International Conference on 3D Web Technology, Evry-Courcouronnes, France; 2022; p. 13. [Google Scholar]
- Li, S.; Zhang, D.; Xian, Y.; Li, B.; Zhang, T.; Zhong, C. Overview of deep learning application on visual SLAM. Displays 2022, 74, 102298. [Google Scholar] [CrossRef]
- Saif, A.F.M.; Mahayuddin, Z.R. Vision based 3D Object Detection using Deep Learning: Methods with Challenges and Applications towards Future Directions. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 203–214. [Google Scholar] [CrossRef]
- Chau, M.Q.; Nguyen, X.P.; Huynh, T.T.; Chu, V.D.; Le, T.H.; Nguyen, T.P.; Nguyen, D.T. Prospects of application of IoT-based advanced technologies in remanufacturing process towards sustainable development and energy-efficient use. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–25. [Google Scholar] [CrossRef]
- Jasmine, S.G.; Anbarasi, L.J.; Narendra, M.; Raj, B.E. Augmented and virtual reality and its applications. In Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality; IGI Global: Hershey, PA, USA, 2021; pp. 68–85. [Google Scholar]
- Aslan, E. How supply chain management will change in the industry 4.0 era? In Handbook of Research on Sustainable Supply Chain Management for the Global Economy; IGI Global: Hershey, PA, USA, 2020; pp. 154–173. [Google Scholar]
- Koreng, R.; Kroemker, H. Augmented Reality Interface: Guidelines for the Design of Contrast Ratios. In Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, CA, USA, 18–21 August 2019. [Google Scholar]
- Bellalouna, F. Digitization of industrial engineering processes using the augmented reality technology: Industrial case studies. Procedia CIRP 2021, 100, 554–559. [Google Scholar] [CrossRef]
- Uva, A.E.; Gattullo, M.; Manghisi, V.M.; Spagnulo, D.; Cascella, G.L.; Fiorentino, M. Evaluating the effectiveness of spatial augmented reality in smart manufacturing: A solution for manual working stations. Int. J. Adv. Manuf. Technol. 2018, 94, 509–521. [Google Scholar] [CrossRef]
- Alves, J.; Marques, B.; Oliveira, M.; Araújo, T.; Dias, P.; Santos, B.S. Comparing Spatial and Mobile Augmented Reality for Guiding Assembling Procedures with Task Validation. In Proceedings of the 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Gondomar, Portugal, 24–26 April 2019; pp. 1–6. [Google Scholar]
- Ivaschenko, A.; Sitnikov, P.; Katirkin, G. Accented Visualization in Digital Industry Applications. In Recent Research in Control Engineering and Decision Making, Proceedings of the International Conference on Information Technologies 2019 (ICIT-2019), Saratov, Russia, 7–8 February 2019; pp. 366–378. [Google Scholar]
- Kocisko, M.; Teliskova, M.; Baron, P.; Zajac, J. An integrated working environment using advanced augmented reality techniques. In Proceedings of the 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), Nagoya, Japan, 21–23 April 2017; pp. 279–283. [Google Scholar]
- Lotsaris, K.; Gkournelos, C.; Fousekis, N.; Kousi, N.; Makris, S. AR based robot programming using teaching by demonstration techniques. Procedia CIRP 2021, 97, 459–463. [Google Scholar] [CrossRef]
- Semm, A.; Erfurth, C.; Uslu, S. Potentials of Augmented Reality–Insights into Industrial Practice. Innovations for Community Services. In Proceedings of the 19th International Conference, I4CS 2019, Wolfsburg, Germany, 24–26 June 2019; pp. 103–122. [Google Scholar]
- Jost, J.; Kirks, T.; Mättig, B. Multi-agent systems for decentralized control and adaptive interaction between humans and machines for industrial environments. In Proceedings of the 2017 7th IEEE International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 2–3 October 2017; pp. 95–100. [Google Scholar]
- Chan, T.C.; Chang, C.C.; Lin, H.H. Augmented Reality intelligent interactive machine tool monitoring system. In Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Hualien, Taiwan, China, 16–19 November 2021; pp. 1–2. [Google Scholar]
- Deac, G.C.; Popa, C.L.; Ghinea, M.; Cotet, C.E. Using Augmented Reality in Smart Manufacturing. In Proceedings of the 28th DAAAM International Symposium, Zadar, Croatia, 8–11 November 2017; pp. 0727–0732. [Google Scholar]
- Oscar, B.-N.; FernáNdez-CaraméS, T.M.; Fraga-Lamas, P.; Vilar-Montesinos, M.A. A Practical Evaluation of Commercial Industrial Augmented Reality Systems in an Industry 4.0 Shipyard. IEEE Access 2018, 6, 8201–8218. [Google Scholar] [CrossRef]
- Zenisek, J.; Wild, N.; Wolfartsberger, J. Investigating the Potential of Smart Manufacturing Technologies. Procedia Comput. Sci. 2021, 180, 507–516. [Google Scholar] [CrossRef]
- Zhang, Y.; Kwok, T.-H. Design and Interaction Interface using Augmented Reality for Smart Manufacturing. Procedia Manuf. 2018, 26, 1278–1286. [Google Scholar] [CrossRef]
- Traganos, K.; Grefen, P.; Vanderfeesten, I.; Erasmus, J.; Boultadakis, G.; Bouklis, P. The HORSE framework: A reference architecture for cyber-physical systems in hybrid smart manufacturing. J. Manuf. Syst. 2021, 61, 461–494. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Smart Manufacturing and Tactile Internet Based on 5G in Industry 4.0: Challenges, Applications and New Trends. Electronics 2021, 10, 3175. [Google Scholar] [CrossRef]
- Aschenbrenner, D.; Leutert, F.; Çençen, A.; Verlinden, J.; Schilling, K.; Latoschik, M.; Lukosch, S. Comparing human factors for augmented reality supported single-user and collaborative repair operations of industrial robots. Front. Robot. AI 2019, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Liau, Y.Y.; Kim, S.; Ryu, K. A Framework for Process Model Based Human-Robot Collaboration System Using Augmented Reality. In Proceedings of the FIP International Conference on Advances in Production Management Systems, Seoul, Korea, 26–30 August 2018; 2018; pp. 482–489. [Google Scholar]
- Maheswari, M.; Brintha, N.C. Smart Manufacturing Technologies in Industry-4. In 0. In Proceedings of the 2021 Sixth International Conference on Image Information Processing (ICIIP), Pradesh, India, 26–28 November 2021; pp. 146–151. [Google Scholar]
- Leong, W.Y.; Chuah, J.H.; Tee, B.T. The Nine Pillars of Technologies for Industry 4.0; The Institution of Engineering and Technology: London, UK, 2020. [Google Scholar]
- Chu, J.; Kabir, A.; Rose, W.; Wang, D.; Yao, M.; Gupta, S.K. Augmented Reality Applications in Industrial Robots. In Manufacturing in the Era of 4th Industrial Revolution: A World Scientific Reference Volume 3: Augmented, Virtual and Mixed Reality Applications in Advanced Manufacturing; World Scientific: Singapore, 2020; pp. 213–237. [Google Scholar]
- De Pace, F.; Manuri, F.; Sanna, A.; Fornaro, C. A systematic review of Augmented Reality interfaces for collaborative industrial robots. Comput. Ind. Eng. 2020, 149, 106806. [Google Scholar] [CrossRef]
- Gallo, J.C.; Cárdenas, P.F. Designing an interface for trajectory programming in industrial robots using augmented reality. In Proceedings of the Advances in Automation and Robotics Research: Proceedings of the 2nd Latin American Congress on Automation and Robotics, Cali, Colombia, 30 October–1 November 2019; Springer International Publishing: Cham, Switzerland, 2020; pp. 142–148. [Google Scholar]
- Kuts, V.; Sarkans, M.; Otto, T.; Tähemaa, T.; Bondarenko, Y. Digital Twin: Concept of Hybrid Programming for Industrial Robots—Use Case. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019; p. 02. [Google Scholar]
- Alfrink, M. Enhanced interaction with industrial robots through extended reality relying on simulation-based digital twins. In Proceedings of the ISC’2019, Lisbon, Portugal, 5–7 June 2019; p. 90. [Google Scholar]
- Su, Y.; Liao, C.; Ko, C.; Cheng, S.; Young, K.-Y. An AR-based manipulation system for industrial robots. In Proceedings of the 2017 11th Asian Control Conference (ASCC), Gold Coast, QLD, Australia, 17–20 December 2017; pp. 1282–1285. [Google Scholar]
- Heimann, O.; Krüger, J. Affordance based approach to automatic program generation for industrial robots in manufacturing. Procedia CIRP 2018, 76, 133–137. [Google Scholar] [CrossRef]
- Kuts, V.; Otto, T.; Tähemaa, T.; Bukhari, K.; Pataraia, T. Adaptive industrial robots using machine vision. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, 9–15 November 2018; p. V002T002A093. [Google Scholar]
- Guhl, J.; Tung, S.; Kruger, J. Concept and architecture for programming industrial robots using augmented reality with mobile devices like microsoft HoloLens. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 13–15 September 2017; pp. 1–4. [Google Scholar]
- Pizzagalli, S.L.; Kuts, V.; Otto, T. User-centered design for Human-Robot Collaboration systems. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1140, 012011. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, Q.; Xu, W.; Yao, B.; Liu, J.; Zhou, Z. A closed-loop brain-computer interface with augmented reality feedback for industrial human-robot collaboration. Int. J. Adv. Manuf. Technol. 2023, 124, 3083–3098. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Cai, Y.; Xu, W.; Liu, Q.; Zhou, Z.; Pham, D.T. Dynamic risk assessment and active response strategy for industrial human-robot collaboration. Comput. Ind. Eng. 2020, 141, 106302. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L. Augmented Reality Enabled Human–Robot Collaboration. In Advanced Human-Robot Collaboration in Manufacturing; Springer International Publishing: Cham, Switzerland, 2021; pp. 395–411. [Google Scholar]
- Gallala, A.; Hichri, B.; Plapper, P. Human-Robot Interaction using Mixed Reality. Proceedings of 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 9–10 December 2021; pp. 1–6. [Google Scholar]
- Villani, V.; Pini, F.; Leali, F.; Secchi, C.; Fantuzzi, C. Survey on Human-Robot Interaction for Robot Programming in Industrial Applications. IFAC-Pap. 2018, 51, 66–71. [Google Scholar] [CrossRef]
- Mihai, S.; Yaqoob, M.; Hung, D.V.; Davis, W.; Towakel, P.; Raza, M.; Karamanoglu, M.; Barn, B.; Shetve, D.; Prasad, R.V. Digital twins: A survey on enabling technologies, challenges, trends and future prospects. IEEE Commun. Surv. Tutor. 2022, 24, 2255–2291. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer International Publishing: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Ríos, J.; Hernandez-Matias, J.; Oliva, M.; Mas, F. Product Avatar as Digital Counterpart of a Physical Individual Product: Literature Review and Implications in an Aircraft. In Proceedings of the 22nd ISPE Inc. International Conference on Concurrent Engineering (CE2015), Delft, The Netherlands, 20–23 July 2015. [Google Scholar]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Garg, G.; Kuts, V.; Anbarjafari, G. Digital twin for fanuc robots: Industrial robot programming and simulation using virtual reality. Sustainability 2021, 13, 10336. [Google Scholar] [CrossRef]
- Li, C.; Zheng, P.; Li, S.; Pang, Y.; Lee, C.K. AR-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop. Robot. Comput.-Integr. Manuf. 2022, 76, 102321. [Google Scholar] [CrossRef]
- Rabah, S.; Assila, A.; Khouri, E.; Maier, F.; Ababsa, F.; Maier, P.; Mérienne, F. Towards improving the future of manufacturing through digital twin and augmented reality technologies. Procedia Manuf. 2018, 17, 460–467. [Google Scholar] [CrossRef]
- Büchner, A.; Micheli, G.; Gottwald, J.; Rudolph, L.; Pantförder, D.; Klinker, G.; Vogel-Heuser, B. Human-centered Augmented Reality Guidance for Industrial Maintenance with Digital Twins: A Use-Case Driven Pilot Study. In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Singapore, 17–21 October 2022; pp. 74–76. [Google Scholar]
- Caiza, G.; Sanz, R. Digital Twin for Monitoring an Industrial Process Using Augmented Reality. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–5. [Google Scholar]
- Vidal-Balea, A.; Blanco-Novoa, O.; Fraga-Lamas, P.; Vilar-Montesinos, M.; Fernández-Caramés, T.M. A.; Blanco-Novoa, O.; Fraga-Lamas, P.; Vilar-Montesinos, M.; Fernández-Caramés, T.M. A collaborative industrial augmented reality digital twin: Developing the future of shipyard 4.0. In Science and Technologies for Smart Cities: 7th EAI International Conference, SmartCity360°, Virtual Event, 2–4 December 2021, Proceedings; Springer International Publishing: Cham, Switzerlan, 2022; pp. 104–120. [Google Scholar]
- Kuts, V.; Otto, T.; Bondarenko, Y.; Yu, F. Digital twin: Collaborative virtual reality environment for multi-purpose industrial applications. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual, 16–19 November 2020; p. V02BT02A010. [Google Scholar]
- Tuan-anh, T.; Ruppert, T.; Eigner, G.; Abonyi, J. Real-Time Locating System and Digital Twin in Lean 4. In 0. In Proceedings of the 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 19–21 May 2021; pp. 000369–000374. [Google Scholar]
- Deac, G.C.; Deac, C.N.; Popa, C.L.; Ghinea, M.; Cotet, C.E. Machine vision in manufacturing processes and the digital twin of manufacturing architectures. In Proceedings of the 28th DAAAM International Symposium, Zadar, Croatia, 8–11 November 2017; pp. 0733–0736. [Google Scholar]
- Orsolits, H.; Rauh, S.F.; Estrada, J.G. Using mixed reality based digital twins for robotics education. In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Singapore, 17–21 October 2022; pp. 56–59. [Google Scholar]
- Sepasgozar, S.M.E.; Ghobadi, M.; Shirowzhan, S.; Edwards, D.J.; Delzendeh, E. Metrics development and modelling the mixed reality and digital twin adoption in the context of Industry 4.0. Eng. Constr. Archit. Manag. 2021, 28, 1355–1376. [Google Scholar] [CrossRef]
- Weistroffer, V.; Keith, F.; Bisiaux, A.; Andriot, C.; Lasnier, A. Using physics-based digital twins and extended reality for the safety and ergonomics evaluation of cobotic workstations. Front. Virtual Real. 2022, 3, 781830. [Google Scholar] [CrossRef]
- Kuts, V.; Bondarenko, Y.; Gavriljuk, M.; Paryshev, A.; Jegorov, S.; Pizzagall, S.; Otto, T. Digital Twin: Universal User Interface for Online Management of the Manufacturing System. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual Conference, 1–5 November 2021; p. V02BT02A003. [Google Scholar]
- Leskovský, R.; Kučera, E.; Haffner, O.; Rosinová, D. Proposal of digital twin platform based on 3d rendering and iiot principles using virtual/augmented reality. In Proceedings of the 2020 Cybernetics & Informatics (K&I), Velké Karlovice, Czech Republic, 29 June–1 February 2020; pp. 1–8. [Google Scholar]
- Künz, A.; Rosmann, S.; Loria, E.; Pirker, J. The potential of augmented reality for digital twins: A literature review. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; pp. 389–398. [Google Scholar]
- Song, J.; Kang, Y.; Song, Q.; Guo, L.; Jamalipour, A. Distributed Resource Optimization With Blockchain Security for Immersive Digital Twin in IIoT. IEEE Trans. Ind. Inform. 2022, 1–10. [Google Scholar] [CrossRef]
- Aheleroff, S.; Zhong, R.Y.; Xu, X. A digital twin reference for mass personalization in industry 4.0. Procedia Cirp 2020, 93, 228–233. [Google Scholar] [CrossRef]
- Stein, C.; Behr, J. Industrial Use Cases: 3D Connectivity for Digital Twins: Decoupling 3D data utilization from delivery and file formats on an infrastructure level. In Proceedings of the 27th International Conference on 3D Web Technology, Evry-Courcouronnes, France, 2–4 November 2022; pp. 1–2. [Google Scholar]
- Li, K.; Cui, Y.; Li, W.; Lv, T.; Yuan, X.; Li, S.; Ni, W.; Simsek, M.; Dressler, F. When internet of things meets metaverse: Convergence of physical and cyber worlds. arXiv 2022, arXiv:2208.13501. [Google Scholar] [CrossRef]
- Dong, J.; Xia, Z.; Zhao, Q. Augmented Reality Assisted Assembly Training Oriented Dynamic Gesture Recognition and Prediction. Appl. Sci. 2021, 11, 9789. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Bai, X. A mixed reality platform for assembly assistance based on gaze interaction in industry. Int. J. Adv. Manuf. Technol. 2021, 116, 3193–3205. [Google Scholar] [CrossRef]
- Schuster, F.; Engelmann, B.; Sponholz, U.; Schmitt, J. Human acceptance evaluation of AR-assisted assembly scenarios. J. Manuf. Syst. 2021, 61, 660–672. [Google Scholar] [CrossRef]
- Lavric, T.; Bricard, E.; Preda, M.; Zaharia, T. Exploring Low-Cost Visual Assets for Conveying Assembly Instructions in AR. In Proceedings of the 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Biarritz, France, 25–27 August 2021; pp. 1–6. [Google Scholar]
- Schmitt, J.; Hillenbrand, A.; Kranz, P.; Kaupp, T. Assisted Human-Robot-Interaction for Industrial Assembly: Application of Spatial Augmented Reality (SAR) for Collaborative Assembly Tasks. In Proceedings of the Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, Boulder, CO, USA, 8–11 March 2021; pp. 52–56. [Google Scholar]
- Zogopoulos, V.; Birem, M.; De Geest, R.; Hofman, R.; Jorissen, L.; Vanherle, B.; Gors, D. Image-based state tracking in Augmented Reality supported assembly operations. Procedia CIRP 2021, 104, 1113–1118. [Google Scholar] [CrossRef]
- Gors, D.; Birem, M.; Geest, R.D.; Domken, C.; Zogopoulos, V.; Kauffmann, S.; Witters, M. An adaptable framework to provide AR-based work instructions and assembly state tracking using an ISA-95 ontology. Procedia CIRP 2021, 104, 714–719. [Google Scholar] [CrossRef]
- Neb, A.; Brandt, D.; Rauhöft, G.; Awad, R.; Scholz, J.; Bauernhansl, T. A novel approach to generate augmented reality assembly assistance automatically from CAD models. Procedia CIRP 2021, 104, 68–73. [Google Scholar] [CrossRef]
- Uletika, N.S.; Hartono, B.; Wijayanto, T. Gamification in Assembly Training: A Systematic Review. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 14–17 December 2020; pp. 1073–1077. [Google Scholar]
- Bauer, R.D.; Agati, S.S.; Hounsell, M.d.S.; Silva, A.T.d. Manual PCB assembly using Augmented Reality towards Total Quality. In Proceedings of the 2020 22nd Symposium on Virtual and Augmented Reality (SVR), Porto de Galinhas, Brazil, 7–10 November 2020; pp. 189–198. [Google Scholar]
- de Souza Cardoso, L.F.; Mariano, F.C.M.Q.; Zorzal, E.R. Mobile augmented reality to support fuselage assembly. Comput. Ind. Eng. 2020, 148, 106712. [Google Scholar] [CrossRef]
- Ojer, M.; Alvarez, H.; Serrano, I.; Saiz, F.A.; Barandiaran, I.; Aguinaga, D.; Querejeta, L.; Alejandro, D. Projection-Based Augmented Reality Assistance for Manual Electronic Component Assembly Processes. Appl. Sci. 2020, 10, 796. [Google Scholar] [CrossRef] [Green Version]
- Horejsi, P.; Novikov, K.; Michal, Š. A Smart Factory in a Smart City: Virtual and Augmented Reality in a Smart Assembly Line. IEEE Access 2020, 8, 94330–94340. [Google Scholar] [CrossRef]
- Pilati, F.; Faccio, M.; Gamberi, M.; Regattieri, A. Learning manual assembly through real-time motion capture for operator training with augmented reality. Procedia Manuf. 2020, 45, 189–195. [Google Scholar] [CrossRef]
- Papanastasiou, S.; Kousi, N.; Karagiannis, P.; Gkournelos, C.; Papavasileiou, A.; Dimoulas, K.; Baris, K.; Koukas, S.; Michalos, G.; Makris, S. Towards seamless human robot collaboration: Integrating multimodal interaction. Int. J. Adv. Manuf. Technol. 2019, 105, 3881–3897. [Google Scholar] [CrossRef]
- Blankemeyer, S.; Recker, T.; Stuke, T.; Brokmann, J.; Geese, M.; Reiniger, M.; Pischke, D.; Oubari, A.; Raatz, A. A Method to Distinguish Potential Workplaces for Human-Robot Collaboration. Procedia CIRP 2018, 76, 171–176. [Google Scholar] [CrossRef]
- Sureshkumar, S.; Agash, C.; Ramya, S.; Kaviyaraj, R.; Elanchezhiyan, S. Augmented Reality with Internet of Things. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 1426–1430. [Google Scholar]
- Vasilis, S.; Nikos, N.; Kosmas, A. An Augmented Reality Framework for Visualization of Internet of Things Data for Process Supervision in Factory Shop-Floor. Procedia CIRP 2022, 107, 1162–1167. [Google Scholar] [CrossRef]
- Stark, E.; Kučera, E.; Haffner, O.; Drahoš, P.; Leskovský, R. Using augmented reality and internet of things for control and monitoring of mechatronic devices. Electronics 2020, 9, 1272. [Google Scholar] [CrossRef]
- Gomes, P.; Magaia, N.; Neves, N. Industrial and artificial Internet of Things with augmented reality. In Convergence of Artificial Intelligence and the Internet of Things; Springer International Publishing: Cham, Switzerlan, 2020; pp. 323–346. [Google Scholar]
- Grambow, G.; Hieber, D.; Oberhauser, R.; Pogolski, C. A context and augmented reality bpmn and bpms extension for industrial internet of things processes. In Business Process Management Workshops, Proceedings of the BPM 2021 International Workshops, Rome, Italy, 6–10 September 2021; Revised Selected Papers; Springer International Publishing: Cham, Switzerlan, 2022; pp. 379–390. [Google Scholar]
- Seitz, A.; Buchinger, D.; Bruegge, B. The conjunction of fog computing and the industrial internet of things-an applied approach. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018; pp. 812–817. [Google Scholar]
- Rahimi, P.; Chrysostomou, C.; Pervaiz, H.; Vassiliou, V.; Ni, Q. Joint radio resource allocation and beamforming optimization for industrial internet of things in software-defined networking-based virtual fog-radio access network 5G-and-beyond wireless environments. IEEE Trans. Ind. Inform. 2021, 18, 4198–4209. [Google Scholar] [CrossRef]
- Seitz, A.; Henze, D.; Nickles, J.; Sauer, M.; Bruegge, B. Augmenting the industrial internet of things with emojis. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 240–245. [Google Scholar]
- Kar, S.; Kar, A.K.; Gupta, M.P. Industrial internet of things and emerging digital technologies–modeling professionals’ learning behavior. IEEE Access 2021, 9, 30017–30034. [Google Scholar] [CrossRef]
- Mahmud, S.H.; Assan, L.; Islam, R. Potentials of internet of things (IoT) in Malaysian construction industry. Ann. Emerg. Technol. Comput. (AETiC) 2018, 2, 44–52. [Google Scholar] [CrossRef]
- Vermesan, O.; EisenHauer, M.; Serrano, M.; Guillemin, P.; Sundmaeker, H.; Tragos, E.Z.; Valiño, J.; Copigneaux, B.; Presser, M.; Aagaard, A. The next generation internet of things–hyperconnectivity and embedded intelligence at the edge. In Next Generation Internet of Things–Distributed Intelligence at the Edge and Human-Machine Interactions; River Publishers: Gistrup, Denmark, 2022; pp. 19–102. [Google Scholar]
- Yang, W.; Zhang, Y. Visualization Error Analysis for Augmented Reality Stereo Video See-Through Head-Mounted Displays in Industry 4.0 Applications. In Proceedings of the International Manufacturing Science and Engineering Conference, West Lafayette, ID, USA, June 27–1 July 2022; p. V002T006A016. [Google Scholar]
- Husinsky, M.; Schlager, A.; Jalaeefar, A.; Klimpfinger, S.; Schumach, M. Situated Visualization of IIoT Data on the Hololens 2. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 472–476. [Google Scholar]
- Körppen, T.; Thim, C. Visualisierung des digitalen Zwillings mit AR. Fabriksoftware 2020, 254, 19–22. [Google Scholar] [CrossRef]
- Moteki, A.; Yamaguchi, N.; Karasudani, A.; Kobayashi, Y.; Yoshitake, T.; Kato, J.; Aoyagi, T. Manufacturing defects visualization via robust edge-based registration. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; pp. 172–173. [Google Scholar]
- Danielsson, O.; Holm, M.; Syberfeldt, A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J. Ind. Inf. Integr. 2020, 20, 100175. [Google Scholar] [CrossRef]
- Avalle, G.; De Pace, F.; Fornaro, C.; Manuri, F.; Sanna, A. An augmented reality system to support fault visualization in industrial robotic tasks. Ieee Access 2019, 7, 132343–132359. [Google Scholar] [CrossRef]
- Juhás, M.; Juhásová, B.; Važan, P. Implementation of Heterogeneous Multirobotic Cell Control Using Visualization Techniques. In Proceedings of the 2022 Cybernetics & Informatics (K&I), Visegrád, Hungary, 11–14 September 2022; pp. 1–6. [Google Scholar]
- Xue, H.; Sharma, P.; Wild, F. User satisfaction in augmented reality-based training using microsoft HoloLens. Computers 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Pusch, A.; Noël, F. Augmented reality for operator training on industrial workplaces–Comparing the Microsoft hololens vs. small and big screen tactile devices. In Product Lifecycle Management in the Digital Twin Era, Proceedings of the 16th IFIP WG 5.1 International Conference, PLM 2019, Moscow, Russia, 8–12 July 2019; Revised Selected Papers 16; Springer: Cham, Switzerland.
- Naumov, I.; Sinakin, M.; Semenishchev, E.; Gapon, N. Mobile smartphone-based augmented reality for industry remote monitoring and maintenance. In Proceedings of the Unconventional Optical Imaging III, Strasbourg, France, 3–7 April 2022; pp. 342–350. [Google Scholar]
- Verde, S.; Marcon, M.; Milani, S.; Tubaro, S. Advanced assistive maintenance based on augmented reality and 5G networking. Sensors 2020, 20, 7157. [Google Scholar] [CrossRef]
- Alves, J.B.; Marques, B.; Ferreira, C.; Dias, P.; Santos, B.S. Comparing augmented reality visualization methods for assembly procedures. Virtual Real. 2022, 26, 235–248. [Google Scholar] [CrossRef]
- Szajna, A.; Stryjski, R.; Woźniak, W.; Chamier-Gliszczyński, N.; Kostrzewski, M. Assessment of augmented reality in manual wiring production process with use of mobile AR glasses. Sensors 2020, 20, 4755. [Google Scholar] [CrossRef]
- Havard, V.; Baudry, D.; Jeanne, B.; Louis, A.; Savatier, X. A use case study comparing augmented reality (AR) and electronic document-based maintenance instructions considering tasks complexity and operator competency level. Virtual Real. 2021, 25, 999–1014. [Google Scholar] [CrossRef]
- Breitkreuz, D.; Müller, M.; Stegelmeyer, D.; Mishra, R. Augmented Reality Remote Maintenance in Industry: A Systematic Literature Review. In Extended Reality, Proceedings of the First International Conference, XR Salento 2022, Lecce, Italy, 6–8 July 2022, Proceedings, Part II; Springer International Publishing: Cham, Switzerland, 2022; pp. 287–305. [Google Scholar]
- Mourtzis, D.; Siatras, V.; Angelopoulos, J. Real-time remote maintenance support based on augmented reality (AR). Appl. Sci. 2020, 10, 1855. [Google Scholar] [CrossRef] [Green Version]
- Naumov, I.; Sinakin, M.; Sinakina, O.; Voronin, V. Using augmented reality devices for remote maintenance and repair of industrial equipment as new challenges in the COVID-19 pandemic. In Proceedings of the Digital Optical Technologies 2021, Online, 21–25 June 2021; pp. 9–15. [Google Scholar]
- Serras, M.; García-Sardiña, L.; Sim, B.; Ávarez, H.; Arambarri, J. AREVA: Augmented Reality Voice Assistant for Industrial Maintenance. Proces. Del Leng. Nat. 2020, 65, 135–138. [Google Scholar]
- Koteleva, N.; Buslaev, G.; Valnev, V.; Kunshin, A. Augmented reality system and maintenance of oil pumps. Int. J. Eng. 2020, 33, 1620–1628. [Google Scholar]
- Lorenz, M.; Shandilya, S.; Knopp, S.; Klimant, P. Industrial augmented reality: Connecting machine-, NC-and sensor-data to an AR maintenance support system. In Proceedings of the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Lisbon, Portugal, 27 March–3 April 2021; pp. 595–596. [Google Scholar]
- Konstantinidis, F.K.; Kansizoglou, I.; Santavas, N.; Mouroutsos, S.G.; Gasteratos, A. Marma: A mobile augmented reality maintenance assistant for fast-track repair procedures in the context of industry 4.0. Machines 2020, 8, 88. [Google Scholar] [CrossRef]
- Ortega, M.; Ivorra, E.; Juan, A.; Venegas, P.; Martínez, J.; Alcañiz, M. Mantra: An effective system based on augmented reality and infrared thermography for industrial maintenance. Appl. Sci. 2021, 11, 385. [Google Scholar] [CrossRef]
- Siew, C.; Nee, A.; Ong, S. Improving maintenance efficiency with an adaptive AR-assisted maintenance system. In Proceedings of the 2019 4th International Conference on Robotics, Control and Automation, Shenzhen, China, 19-21 July 2019; pp. 74–78. [Google Scholar]
- Angelopoulos, J.; Mourtzis, D. An intelligent product service system for adaptive maintenance of Engineered-to-Order manufacturing equipment assisted by augmented reality. Appl. Sci. 2022, 12, 5349. [Google Scholar] [CrossRef]
- Kostoláni, M.; Murín, J.; Kozák, Š. Intelligent predictive maintenance control using augmented reality. In Proceedings of the 2019 22nd International Conference on Process Control (PC19), Strbske Pleso, Slovakia, 11–14 June 2019; pp. 131–135. [Google Scholar]
- Parras-Burgos, D.; Melgarejo-Torralba, M.; Cañavate, F.J.F.; Fernández-Pacheco, D.G. Graphic Interpretation of Surfaces with the Support of Augmented Reality as a Training Complement in Engineering Studies. In Advances in Design Engineering II, Proceedings of the International conference on The Digital Transformation in the Graphic Engineering, Málaga, Spain, 29 June–1 July 2022; pp. 318–326. [Google Scholar]
- Verner, I.; Cuperman, D.; Perez-Villalobos, H.; Polishuk, A.; Gamer, S. Augmented and Virtual Reality Experiences for Learning Robotics and Training Integrative Thinking Skills. Robotics 2022, 11, 90. [Google Scholar] [CrossRef]
- Estrada, J.; Paheding, S.; Yang, X.; Niyaz, Q. Deep-Learning-Incorporated Augmented Reality Application for Engineering Lab Training. Appl. Sci. 2022, 12, 5159. [Google Scholar] [CrossRef]
- Gattullo, M.; Evangelista, A.; Uva, A.E.; Fiorentino, M.; Gabbard, J.L. What, How, and Why are Visual Assets Used in Industrial Augmented Reality? A Systematic Review and Classification in Maintenance, Assembly, and Training (From 1997 to 2019). IEEE Trans. Vis. Comput. Graph. 2022, 28, 1443–1456. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wei, H.; Hu, H.; Liu, R.; Geng, J. Industrial Operation Training Technology Based on Panoramic Image and Augmented Reality. In Proceedings of the 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Ma’anshan, China, 18–20 November 2022; pp. 1216–1220. [Google Scholar]
- Santos, J.E.; Nunes, M.; Pires, M.; Rocha, J.; Sousa, N.; Adão, T.; Magalhães, L.G.; Jesus, C.; Sousa, R.; Lima, R.; et al. Generic XR game-based approach for industrial training. In Proceedings of the 2022 International Conference on Graphics and Interaction (ICGI), Aveiro, Portugal, 3–4 November 2022; pp. 1–8. [Google Scholar]
- de Jesus, C.; Marcorin, A.; Lima, R.; Sousa, R.; Souza, I.; Oliveira, E. SPC-Based Model for Evaluation of Training Processes in Industrial Context. J. Ind. Eng. Manag. 2022, 15, 538–551. [Google Scholar] [CrossRef]
- Hsu, H.H.; Chuang, C.Y. Application of Augmented Reality for Equipment Maintenance and Employee Training in Manufacturing Plant. In Proceedings of the 2022 IEEE 4th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 27–29 May 2022; pp. 136–139. [Google Scholar]
- Ye, W.; He, N.; Wang, J. Research on Augmented Reality Technology in the Training of Pre-flight Safety Inspect Process. In Proceedings of the 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2022; pp. 68–71. [Google Scholar]
- Butaslac, I.M.; Fujimoto, Y.; Sawabe, T.; Kanbara, M.; Kato, H. Systematic Review of Augmented Reality Training Systems. IEEE Trans Vis Comput Graph 2022, 1–20. [Google Scholar] [CrossRef]
- Lavric, T.; Bricard, E.; Preda, M.; Zaharia, T. A low-cost AR training system for manual assembly operations. Comput. Sci. Inf. Syst. 2022, 19, 1047–1073. [Google Scholar] [CrossRef]
- Matsas, E.; Vosniakos, G.-C. Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. Int. J. Interact. Des. Manuf. (IJIDeM) 2017, 11, 139–153. [Google Scholar] [CrossRef]
Pos | Author Keywords | Total | AGR | ADY | PDLY | h-Index |
---|---|---|---|---|---|---|
1 | Industry 4.0 | 414 | 8.0 | 111.0 | 53.6 | 42 |
2 | Internet of Things | 172 | 4.5 | 40.5 | 47.1 | 29 |
3 | Artificial intelligence | 143 | 10.5 | 43.0 | 60.1 | 20 |
4 | Smart manufacturing | 104 | 4.0 | 28.5 | 54.8 | 24 |
5 | Visualization | 103 | −1.0 | 24.0 | 46.6 | 12 |
6 | Human–robot interaction | 77 | −0.5 | 18.5 | 48.1 | 15 |
7 | Maintenance | 59 | −1.5 | 12.0 | 40.7 | 15 |
8 | Digital twin | 53 | 3.5 | 15.5 | 58.5 | 13 |
9 | Training | 53 | 3.5 | 13.0 | 49.1 | 10 |
10 | Assembly | 31 | 2.0 | 8.5 | 54.8 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voinea, G.-D.; Gîrbacia, F.; Duguleană, M.; Boboc, R.G.; Gheorghe, C. Mapping the Emergent Trends in Industrial Augmented Reality. Electronics 2023, 12, 1719. https://doi.org/10.3390/electronics12071719
Voinea G-D, Gîrbacia F, Duguleană M, Boboc RG, Gheorghe C. Mapping the Emergent Trends in Industrial Augmented Reality. Electronics. 2023; 12(7):1719. https://doi.org/10.3390/electronics12071719
Chicago/Turabian StyleVoinea, Gheorghe-Daniel, Florin Gîrbacia, Mihai Duguleană, Răzvan Gabriel Boboc, and Carmen Gheorghe. 2023. "Mapping the Emergent Trends in Industrial Augmented Reality" Electronics 12, no. 7: 1719. https://doi.org/10.3390/electronics12071719
APA StyleVoinea, G. -D., Gîrbacia, F., Duguleană, M., Boboc, R. G., & Gheorghe, C. (2023). Mapping the Emergent Trends in Industrial Augmented Reality. Electronics, 12(7), 1719. https://doi.org/10.3390/electronics12071719