A Low-Power Ternary Adder Using Ferroelectric Tunnel Junctions
Abstract
:1. Introduction
2. Ternary Adder Built from Full Adders
3. Ferroelectric Tunnel Junctions: Basics
3.1. FTJ: Device Structure and Switching Operation
3.2. FTJ: Device Characteristics and Modeling
4. FTJ–Based Majority Gate
4.1. Operation of the FTJ-Based Majority Gate
4.2. Full Adder (FA)
5. Simulation Methodology and Results
5.1. Simulation of Ternary Adder
5.2. Energy, Latency and Power Consumption of Ternary Adder
5.3. Comparison with 32-bit Adders in Other Memory Technologies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.S.; Son, M.W.; Kim, K.M. Memristive Stateful Logic for Edge Boolean Computers. Adv. Intell. Syst. 2021, 3, 2000278. [Google Scholar] [CrossRef]
- Datta, G.; Kundu, S.; Yin, Z.; Lakkireddy, R.T.; Mathai, J.; Jacob, A.; Beerel, P.A.; Jaiswal, A.R. P2M: A Processing-in-Pixel-in-Memory Paradigm for Resource-Constrained TinyML Applications. Sci. Rep. 2022, 12, 14396. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, S.; Duong, Q.T.; Covi, E.; Mikolajick, T.; Slesazeck, S. Improvement of FTJ on-current by work function engineering for massive parallel neuromorphic computing. In Proceedings of the ESSCIRC 2022—IEEE 48th European Solid State Circuits Conference (ESSCIRC), Milan, Italy, 19–22 September 2022; pp. 137–140. [Google Scholar] [CrossRef]
- Reuben, J.; Pechmann, S. Accelerated Addition in Resistive RAM Array Using Parallel-Friendly Majority Gates. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1108–1121. [Google Scholar] [CrossRef]
- Pan, Y.; Ouyang, P.; Zhao, Y.; Kang, W.; Yin, S.; Zhang, Y.; Zhao, W.; Wei, S. A Multilevel Cell STT-MRAM-Based Computing In-Memory Accelerator for Binary Convolutional Neural Network. IEEE Trans. Magn. 2018, 54, 9401305. [Google Scholar] [CrossRef]
- Barla, P.; Joshi, V.K.; Bhat, S. Fully non-volatile hybrid full adder based on SHE+STT-MTJ/CMOS LIM architecture. IEEE Trans. Magn. 2022, 58, 3401311. [Google Scholar] [CrossRef]
- Xiao, T.P.; Bennett, C.H.; Hu, X.; Feinberg, B.; Jacobs-Gedrim, R.; Agarwal, S.; Brunhaver, J.S.; Friedman, J.S.; Incorvia, J.A.C.; Marinella, M.J. Energy and Performance Benchmarking of a Domain Wall-Magnetic Tunnel Junction Multibit Adder. IEEE J. Explor.-Solid-State Comput. Devices Circuits 2019, 5, 188–196. [Google Scholar] [CrossRef]
- Slesazeck, S.; Havel, V.; Breyer, E.; Mulaosmanovic, H.; Hoffmann, M.; Max, B.; Duenkel, S.; Mikolajick, T. Uniting The Trinity of Ferroelectric HfO2 Memory Devices in a Single Memory Cell. In Proceedings of the 2019 IEEE 11th International Memory Workshop (IMW), Monterey, CA, USA, 12–15 May 2019. [Google Scholar] [CrossRef]
- Metze, G.; Robertson, J.E. Elimination of carry propagation in digital computers. In Proceedings of the IFIP Congress, Paris, France, 15–20 June 1959. [Google Scholar]
- Avizienis, A. Signed-Digit Numbe Representations for Fast Parallel Arithmetic. IRE Trans. Electron. Comput. 1961, EC-10, 389–400. [Google Scholar] [CrossRef]
- Reuben, J.; Fey, D. Carry-free Addition in Resistive RAM Array: n-bit Addition in 22 Memory Cycles. In Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 7–9 July 2021; pp. 157–163. [Google Scholar] [CrossRef]
- Rajashekhara, T.; Chen, I.S. A fast adder design using signed-digit numbers and ternary logic. In Proceedings of the IEEE Technical Conference on Southern Tier, Columbia, SC, USA, 17–21 February 1990; pp. 187–194. [Google Scholar] [CrossRef]
- Kornerup, P. Reviewing High-Radix Signed-Digit Adders. IEEE Trans. Comput. 2015, 64, 1502–1505. [Google Scholar] [CrossRef]
- Fey, D.; Reichenbach, M.; Söll, C.; Biglari, M.; Röber, J.; Weigel, R. Using Memristor Technology for Multi-Value Registers in Signed-Digit Arithmetic Circuits. In Proceedings of the Second International Symposium on Memory Systems, MEMSYS ’16, Alexandria, VA, USA, 3–6 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 442–454. [Google Scholar] [CrossRef]
- Ercegovac, M.D.; Lang, T. CHAPTER 2—Two-Operand Addition. In Digital Arithmetic; Ercegovac, M.D., Lang, T., Eds.; The Morgan Kaufmann Series in Computer Architecture and Design; Morgan Kaufmann: San Francisco, CA, USA, 2004; pp. 50–135. [Google Scholar] [CrossRef]
- Schenk, T.; Pešić, M.; Slesazeck, S.; Schroeder, U.; Mikolajick, T. Memory technology—A primer for material scientists. Rep. Prog. Phys. 2020, 83, 086501. [Google Scholar] [CrossRef]
- Cheema, S.S.; Shanker, N.; Hsu, C.H.; Datar, A.; Bae, J.; Kwon, D.; Salahuddin, S. One Nanometer HfO2-Based Ferroelectric Tunnel Junctions on Silicon. Adv. Electron. Mater. 2022, 8, 2100499. [Google Scholar] [CrossRef]
- Covi, E.; Duong, Q.T.; Lancaster, S.; Havel, V.; Coignus, J.; Barbot, J.; Richter, O.; Klein, P.; Chicca, E.; Grenouillet, L.; et al. Ferroelectric Tunneling Junctions for Edge Computing. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021. [Google Scholar] [CrossRef]
- Max, B.; Mikolajick, T.; Hoffmann, M.; Slesazeck, S. Retention characteristics of Hf0.5Zr0.5O2-based ferroelectric tunnel junctions. In Proceedings of the 2019 IEEE 11th International Memory Workshop (IMW), Monterey, CA, USA, 12–15 May 2019. [Google Scholar]
- Huang, H.H.; Wu, T.Y.; Chu, Y.H.; Wu, M.H.; Hsu, C.H.; Lee, H.Y.; Sheu, S.S.; Lo, W.C.; Hou, T.H. A comprehensive modeling framework for ferroelectric tunnel junctions. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019. [Google Scholar]
- Preisach, F. Über die magnetische Nachwirkung. Z. Phys. 1935, 94, 277–302. [Google Scholar] [CrossRef]
- Fontanini, R.; Barbot, J.; Segatto, M.; Lancaster, S.; Duong, Q.; Driussi, F.; Grenouillet, L.; Triozon, L.; Coignus, J.; Mikolajick, T.; et al. Interplay Between Charge Trapping and Polarization Switching in BEOL-Compatible Bilayer Ferroelectric Tunnel Junctions. IEEE J. Electron Devices Soc. 2022, 10, 593–599. [Google Scholar] [CrossRef]
- Miller, S.; Nasby, R.; Schwank, J.; Rodgers, M.; Dressendorfer, P. Device modeling of ferroelectric capacitors. J. Appl. Phys. 1990, 68, 6463–6471. [Google Scholar] [CrossRef]
- Jiang, B.; Zurcher; Jones; Gillespie; Lee. Computationally efficient ferroelectric capacitor model for circuit simulation. In Proceedings of the 1997 Symposium on VLSI Technology, Taipei, Taiwan, 3–5 June 1997; pp. 141–142. [Google Scholar]
- Gibertini, P.; Fehlings, L.; Lancaster, S.; Duong, Q.T.; Mikolajick, T.; Dubourdieu, C.; Slesazeck, S.; Covi, E.; Deshpande, V. A Ferroelectric Tunnel Junction-based Integrate-and-Fire Neuron. In Proceedings of the 2022 IEEE International Conference on Electronics Circuits and Systems (ICECS), Glasgow, UK, 24–26 October 2022. [Google Scholar]
- Lederer, M.; Olivo, R.; Lehninger, D.; Abdulazhanov, S.; Kämpfe, T.; Kirbach, S.; Mart, C.; Seidel, K.; Eng, L.M. On the Origin of Wake-Up and Antiferroelectric-Like Behavior in Ferroelectric Hafnium Oxide. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2021, 15, 2100086. [Google Scholar] [CrossRef]
- Lancaster, S.; Mikolajick, T.; Slesazeck, S. A multi-pulse wakeup scheme for on-chip operation of devices based on ferroelectric doped HfO2 thin films. Appl. Phys. Lett. 2022, 120, 022901. [Google Scholar] [CrossRef]
- Lakshmi, V.; Reuben, J.; Pudi, V. A Novel In-Memory Wallace Tree Multiplier Architecture Using Majority Logic. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 1148–1158. [Google Scholar] [CrossRef]
- Jiang, H.; Angizi, S.; Fan, D.; Han, J.; Liu, L. Non-Volatile Approximate Arithmetic Circuits Using Scalable Hybrid Spin-CMOS Majority Gates. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1217–1230. [Google Scholar] [CrossRef]
- Kobayashi, M.; Tagawa, Y.; Mo, F.; Saraya, T.; Hiramoto, T. Ferroelectric HfO2 Tunnel Junction Memory With High TER and Multi-Level Operation Featuring Metal Replacement Process. IEEE J. Electron Devices Soc. 2019, 7, 134–139. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Q.; Valanoor, N. A perspective on electrode engineering in ultrathin ferroelectric heterostructures for enhanced tunneling electroresistance. Appl. Phys. Rev. 2020, 7, 041316. [Google Scholar] [CrossRef]
- Pan, C.; Naeemi, A. An Expanded Benchmarking of Beyond-CMOS Devices Based on Boolean and Neuromorphic Representative Circuits. IEEE J. Explor.-Solid-State Comput. Devices Circuits 2017, 3, 101–110. [Google Scholar] [CrossRef]
- Deng, E.; Zhang, Y.; Kang, W.; Dieny, B.; Klein, J.O.; Prenat, G.; Zhao, W. Synchronous 8-bit Non-Volatile Full-Adder based on Spin Transfer Torque Magnetic Tunnel Junction. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1757–1765. [Google Scholar] [CrossRef]
A | B | |||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 300 mV | 315 mV | 0 |
0 | 0 | 1 | 0 | 310 mV | 315 mV | 0 |
0 | 1 | 0 | 0 | 310 mV | 315 mV | 0 |
0 | 1 | 1 | 1 | 320 mV | 315 mV | 1 |
1 | 0 | 0 | 0 | 310 mV | 315 mV | 0 |
1 | 0 | 1 | 1 | 320 mV | 315 mV | 1 |
1 | 1 | 0 | 1 | 320 mV | 315 mV | 1 |
1 | 1 | 1 | 1 | 330 mV | 315 mV | 1 |
NVM Device | Energy | Latency | Power | Ref. |
---|---|---|---|---|
ASL-PMA | 3.68 pJ | 29 ns | 0.12 mW | [32] |
STT-MRAM | 4.2 pJ | 0.6 ns | 7 mW | [33] |
SOT-DW | 0.031 pJ | 495 ns | 62.6 nW | [7] |
FTJ | 0.78 pJ | 100 μs | 7.8 nW | This work |
CMOS | 0.1 pJ | 0.4 ns | 0.25 mW | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reuben, J.; Fey, D.; Lancaster, S.; Slesazeck, S. A Low-Power Ternary Adder Using Ferroelectric Tunnel Junctions. Electronics 2023, 12, 1163. https://doi.org/10.3390/electronics12051163
Reuben J, Fey D, Lancaster S, Slesazeck S. A Low-Power Ternary Adder Using Ferroelectric Tunnel Junctions. Electronics. 2023; 12(5):1163. https://doi.org/10.3390/electronics12051163
Chicago/Turabian StyleReuben, John, Dietmar Fey, Suzanne Lancaster, and Stefan Slesazeck. 2023. "A Low-Power Ternary Adder Using Ferroelectric Tunnel Junctions" Electronics 12, no. 5: 1163. https://doi.org/10.3390/electronics12051163
APA StyleReuben, J., Fey, D., Lancaster, S., & Slesazeck, S. (2023). A Low-Power Ternary Adder Using Ferroelectric Tunnel Junctions. Electronics, 12(5), 1163. https://doi.org/10.3390/electronics12051163