Investigating the Operational Complexity of Digital Workflows Based on Human Cognitive Aspects
Abstract
:1. Introduction
2. Research Background
2.1. Human–Machine Coevolution from CogInfoCom and cVR Perspective
2.2. Virtual Realities as Virtual Workplaces
2.3. Operational Complexity
2.4. Human–Computer Interaction in Digital Work Environments
3. Definitions and Metrics
3.1. Elementary Operation—EO
3.2. Complex Operation—CO
3.3. Navigation-Based Elementary Operation—NBEO
3.4. Ordering Operation—OO
3.5. High Distraction Operations—HDO
3.6. High Alternation Operations—HAO
3.7. Information Availability—IA
3.8. Information Access Cost—IAC
3.9. Information Validity—IV
3.10. Confuse Information Content—CIC
3.11. Personalized Workflow Order Ability—PWO
3.12. Personalized Information Overview—PIO
3.13. Task Execution Tools—TET
3.14. Degree of Interaction—DI
- Interaction with co-users;
- 2D digital content management;
- Real-time content management and change tracking;
- Navigation (2D interface or 3D space);
- Interaction with 3D objects;
- Interaction with digital twins;
- Simulation management;
- Adding and removing simulations;
- Interaction with AI with human initiation;
- Interaction with AI with both sides (AI and human) of the initiation.
4. Materials and Methods
4.1. Operation Complexity
4.1.1. 2D—Windows Operation System
4.1.2. Desktop VR—MaxWhere
4.1.3. Immersive VR—Immersed
4.2. General Workflow
- 1.
- Positioning: Finding a position to have an optimal overview for the task.
- 2.
- Personalization: Swapping two program windows/displays.
- 3.
- Teamwork: online meeting, editing documents together.
- (a)
- Online meeting for discussing the tasks.
- (b)
- Making a note of what was discussed in the document.
- (c)
- Back-and-forth switching between spreadsheet and document.
- 4.
- E-mail: Sending an e-mail to an external person who is not involved in this project.
- 5.
- Browser:
- (a)
- Search for information.
- (b)
- Transfer information to the document.
- 6.
- Closing the interface.
4.3. HCI Analysis
4.4. Questionnaire on User Needs and Preferences
Participant Recruitment
5. Results
5.1. Results of Operations Complexity Analysis
5.1.1. Operations in 2D Platform
- Positioning: Finding a position to have an optimal overview for the task.
- (a)
- Open online meeting—1 NBEO = 1.5 EO
- (b)
- Minimize down to taskbar—1 NBEO = 1.5 EO
- (c)
- Open the document—1 NBEO = 1.5 EO
- (d)
- Minimize down to taskbar—1 NBEO = 1.5 EO
- (e)
- Open e-mail client—1 NBEO = 1.5 EO
- (f)
- Minimize down to taskbar—1 NBEO = 1.5 EO
- (g)
- Open browser—1 NBEO = 1.5 EO
- (h)
- Minimize down to taskbar—1 NBEO = 1.5 EO
- (i)
- Open spreadsheet—1 NBEO = 1.5 EO
- Personalization: Swapping two program windows/displays.—1 OO = 5.5 EO
- Teamwork: online meeting, editing documents together.
- (a)
- Online meeting for discussing the tasks.
- i.
- Select online meeting to participate—1 NBEO = 1.5 EO
- (b)
- Making a note of what was discussed in the document.
- i.
- Alternating between document and online meeting—1 HAO = 5 EO
- (c)
- Back-and-forth switching between spreadsheet and document.
- i.
- Loading the document—1 NBEO = 1.5 EO
- ii.
- Loading the spreadsheet—1 NBEO = 1.5 EO
- E-mail: Sending an e-mail.—1 NBEO = 1.5 EO
- Browser:
- (a)
- Search for information.—1 NBEO = 1.5 EO
- (b)
- Transfer information to the document.—1 CO = 3 EO
- Closing the applications.—5 × 1 NBEO = 7.5 EO
5.1.2. Operations in 3D Desktop VR Platform
- Positioning: Finding a position to have an optimal overview for the task.
- (a)
- Loading space by click on link.—1 NBEO = 1.5 EO
- (b)
- Positioning with mouse.—1 NBEO = 1.5 EO
- Personalization: Swapping two program windows/displays.
- (a)
- In MaxWhere version 5.1.7: reloading two content, no real window moving
- Smartboard selection by one click.—1 EO
- Copy browser address.—1 CO = 3 EO
- Click on other smartboard.—1 EO
- Paste browser address.—1 CO = 3 EO
- (b)
- In MaxWhere version 7.0.2: moving two smartboards
- Right mouse click to display menu.—1 EO
- Activate the editor interface by clicking on the icon.—1 NBEO = 1.5 EO
- Move the first window.—1 OO = 5.5 EO
- Click on the second window.—1 NBEO = 1.5 EO
- Move the second window to position.—1 OO = 5.5 EO
- Move the first window to position.—1 OO = 5.5 EO
- Close the menu.—1 NBEO = 1.5 EO
- Teamwork: online meeting, editing documents together.
- (a)
- Online meeting for discussing the tasks.
- i.
- Click to enter the meeting.—1 EO
- (b)
- Making a note of what was discussed in the document.
- i.
- Select the note.—1 HAO = 5 EO
- (c)
- Back-and-forth switching between spreadsheet and document.
- Loading the document—1 EO
- Loading the spreadsheet—1 EO
- E-mail: Sending an e-mail.
- (a)
- Click on e-mail window.—1 EO
- Browser:
- (a)
- Search for information.
- Double click for better visibility and activation.—1 EO
- (b)
- Transfer information to the document.
- Copy and paste the information to the document.—1 CO = 3 EO
- Click on fullsize button to return to the original position.—1 EO
- Closing the interface.—1 NBEO = 1.5 EO
5.1.3. Operations in Immersed VR Platform
- Positioning: Finding a position to have an optimal overview for the task.
- (a)
- Opening VR space.—1 NBEO = 1.5 EO
- (b)
- Switch on VR headset.—1 NBEO = 1.5 EO
- (c)
- Enable head tracking (unlock screen).
- Raising the left hand.—1 EO
- Button press.—1 NBEO = 1.5 EO
- (d)
- Enable hand tracking: pinch ring finger and thumb together—1 EO
- Personalization: Swapping two program windows/displays.
- By default, the monitors are grouped together in a snap grid.
- (a)
- Ungroup the monitors.—1 EO
- (b)
- Grab the selected monitor (pointing to the monitor by touching index finger and thumb together), and move/navigate with fingers together - move the arm out of “snap gird” and move to the new position.—1 CO = 3 EO
- (c)
- Select the second monitor and mot to a new position. 1 CO = 3 EO
- (d)
- Lock the screen.—1 EO
- Teamwork: online meeting, editing documents together.
- (a)
- Online meeting for discussing the tasks.
- Click to enter the meeting.—1 EO
- (b)
- Making a note of what was discussed in the document.
- Select the note.—1 HAO = 5 EO
- (c)
- Back-and-forth switching between spreadsheet and document.
- Loading the document—1 EO
- Loading the spreadsheet—1 EO
- E-mail: Sending an e-mail.
- (a)
- Click on e-mail window.—1 EO
- Browser:
- (a)
- Search for information.
- Double click for better visibility and activation.—1 EO
- (b)
- Transfer information to the document.—1 CO = 3 EO
- Closing the interface.—1 NBEO = 1.5 EO
5.2. Results of HCI Analysis
5.3. User Feedback Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EO | Elementary operation |
CO | Complex operation |
NBEO | Navigation-based elementary operation |
OO | Ordering operations |
HDO | High distraction operations |
HAO | High alternation operations |
IA | Information availability |
IAC | Information access cost |
IV | Information Validity |
CIC | Confuse information content |
PWO | Personalized workflow order ability |
PIO | Personalized information overview |
TET | Task execution tools |
DI | Degree of interaction |
References
- Lanier, J.; Biocca, F. An insider’s view of the future of virtual reality. J. Commun. 1992, 42, 150–172. [Google Scholar] [CrossRef]
- Wohlgenannt, I.; Simons, A.; Stieglitz, S. Virtual Reality. Bus. Inf. Syst. Eng. 2020, 62, 455–461. [Google Scholar] [CrossRef]
- Horváth, I.; Csapó, Á.B.; Berki, B.; Sudár, A.; Baranyi, P. Definition, Background and Research Perspectives Behind ‘Cognitive Aspects of Virtual Reality’ (cVR). Infocommun. J. 2022, 14, 10–16. [Google Scholar]
- Aschenbrenner, D.; Leutert, F.; Çençen, A.; Verlinden, J.; Schilling, K.; Latoschik, M.; Lukosch, S. Comparing Human Factors for Augmented Reality Supported Single-User and Collaborative Repair Operations of Industrial Robots. Front. Robot. AI 2019, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obermair, F.; Althaler, J.; Seiler, U.; Zeilinger, P.; Lechner, A.; Pfaffeneder, L.; Richter, M.; Wolfartsberger, J. Maintenance with Augmented Reality Remote Support in Comparison to Paper-Based Instructions: Experiment and Analysis. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 16–21 April 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Botella, C.; Riva, G.; Gaggioli, A.; Wiederhold, B.K.; Alcaniz, M.; Baños, R.M. The Present and Future of Positive Technologies. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 78–84. [Google Scholar] [CrossRef]
- Won, A.S.; Bailenson, J.; Lee, J.; Lanier, J. Homuncular Flexibility in Virtual Reality. J. Comput.-Mediat. Commun. 2015, 20, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Cognitive Load. Available online: https://dictionary.apa.org/cognitive-load (accessed on 28 November 2022).
- Baranyi, P.; Csapo, A. Definition and synergies of cognitive infocommunications. Acta Polytech. Hung. 2012, 9, 67–83. [Google Scholar]
- Baranyi, P.; Csapo, A.; Sallai, G. Cognitive Infocommunications (CogInfoCom); Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Li, J.R.; Khoo, L.P.; Tor, S.B. Desktop virtual reality for maintenance training: An object oriented prototype system (V-REALISM). Comput. Ind. 2003, 52, 109–125. [Google Scholar] [CrossRef]
- American Psychological Association. Affordance. Available online: https://dictionary.apa.org/affordance (accessed on 26 November 2022).
- Torok, A. From human-computer interaction to cognitive infocommunications: A cognitive science perspective. In Proceedings of the 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Wroclaw, Poland, 16–18 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 433–438. [Google Scholar] [CrossRef]
- Bhargava, A.; Lucaites, K.M.; Hartman, L.S.; Solini, H.; Bertrand, J.W.; Robb, A.C.; Pagano, C.C.; Babu, S.V. Revisiting affordance perception in contemporary virtual reality. Virtual Real. 2020, 24, 713–724. [Google Scholar] [CrossRef]
- Felton, W.M.; Jackson, R.E. Presence: A Review. Int. J. Hum.—Comput. Interact. 2021, 38, 1–18. [Google Scholar] [CrossRef]
- Cekuls, A. The Impact of Complexity to Collaboration and Ability of Businesses to Share Information Across Teams. In Proceedings of the 21st International Multidisciplinary Scientific GeoConference SGEM 2021, Albena, Bulgaria, 16–22 August 2021; STEF92 Technology: Sofia, Bulgaria, 2021. [Google Scholar] [CrossRef]
- Li, K.; Wieringa, P. Structured Operation Environment And Perceived Complexity In Human Supervisory Control. Asian J. Control 2001, 3, 181–189. [Google Scholar] [CrossRef]
- Rasmussen, J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. 1983, SMC-13, 257–266. [Google Scholar] [CrossRef]
- Chai, T.; Qin, S.J.; Wang, H. Optimal operational control for complex industrial processes. Annu. Rev. Control 2014, 38, 81–92. [Google Scholar] [CrossRef]
- Adetola, V.; Guay, M. Integration of real-time optimization and model predictive control. J. Process. Control 2010, 20, 125–133. [Google Scholar] [CrossRef]
- Alvarez, L.; Odloak, D. Robust integration of real time optimization with linear model predictive control. Comput. Chem. Eng. 2010, 34, 1937–1944. [Google Scholar] [CrossRef]
- Darby, M.; Nikolaou, M.; Jones, J.; Nicholson, D. RTO: An overview and assessment of current practice. J. Process. Control 2011, 21, 874–884. [Google Scholar] [CrossRef]
- Adriaensen, A.; Decré, W.; Pintelon, L. Can Complexity-Thinking Methods Contribute to Improving Occupational Safety in Industry 4.0? A Review of Safety Analysis Methods and Their Concepts. Safety 2019, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z.; Wu, B.; Wu, S. A spaceflight operation complexity measure and its experimental validation. Int. J. Ind. Ergon. 2009, 39, 756–765. [Google Scholar] [CrossRef]
- Fritzsche, L.; Jendrusch, R.; Leidholdt, W.; Bauer, S.; Jäckel, T.; Pirger, A. Introducing ema (Editor for Manual Work Activities)—A New Tool for Enhancing Accuracy and Efficiency of Human Simulations in Digital Production Planning. In Digital Human Modeling; Springer: Berlin/Heidelberg, Germany, 2011; pp. 272–281. [Google Scholar] [CrossRef]
- Horváth, I.; Sudár, A. Factors contributing to the enhanced performance of the MaxWhere 3D VR platform in the distribution of digital information. Acta Polytech. Hung. 2018, 15, 149–173. [Google Scholar] [CrossRef]
- Kocsis, D. A conceptual foundation of design and implementation research in accounting information systems. Int. J. Account. Inf. Syst. 2019, 34, 100420. [Google Scholar] [CrossRef]
- Card, S.K.; Moran, T.P.; Newell, A. The Psychology of Human-Computer Interaction; CRC Press: Boca Raton, FL, USA, 1983. [Google Scholar] [CrossRef]
- Shneiderman, B.; Plaisant, C.; Cohen, M.; Jacobs, S.; Elmqvist, N. Designing the User Interface Strategies for Effective Human-Computer Interaction; Pearson Higher Education & Professional Group: New York City, NY, USA, 2017; p. 624. [Google Scholar]
- Card, S.; Henderson, D.A., Jr. A multiple, virtual-workspace interface to support user task switching. In Proceedings of the CHI’87 Human Factors in Computing Systems Conference, Toronto, ON, Canada, 5–9 April 1987; ACM Press: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Henderson, D.A., Jr.; Card, S. Rooms: The use of multiple virtual workspaces to reduce space contention in a window-based graphical user interface. ACM Trans. Graph. 1986, 5, 211–243. [Google Scholar] [CrossRef]
- Endert, A.; Bradel, L.; Zeitz, J.; Andrews, C.; North, C. Designing large high-resolution display workspaces. In Proceedings of the International Working Conference on Advanced Visual Interfaces—AVI’12, Capri Island, Italy, 21–25 May 2012; ACM Press: New York, NY, USA, 2012; pp. 58–65. [Google Scholar] [CrossRef]
- Spellman, P.J.; Mosier, J.N.; Deus, L.M.; Carlson, J.A. Collaborative Virtual Workspace. In Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work: The Integration Challenge the Integration Challenge—GROUP ’97, Phoenix, AZ, USA, 16–19 November 1997; ACM Press: New York, NY, USA, 1997; pp. 197–203. [Google Scholar] [CrossRef]
- Green, T.M.; Ribarsky, W.; Fisher, B. Building and Applying a Human Cognition Model for Visual Analytics. Inf. Vis. 2009, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- MaxWhere. Available online: https://www.maxwhere.com/ (accessed on 29 November 2022).
- Immersed. Available online: https://immersed.com/ (accessed on 26 November 2022).
- Horváth, I. An Analysis of Personalized Learning Opportunities in 3D VR. Front. Comput. Sci. 2021, 3, 673826. [Google Scholar] [CrossRef]
- Baranyi, P.; Galambos, P.; Csapó, Á.; Jaloveczki, L. Cognitive Navigation and Manipulation (CogiNav) Method. U.S. Patent 2018/0032128 A1, 1 February 2018. [Google Scholar]
2D—Windows | 3D Desktop VR with Icons—MaxWhere 5 | 3D Desktop VR with Menu—MaxWhere 7 | 3D Immersive VR—Immersed | |
---|---|---|---|---|
Information Avaliability (IA) | 0.2 | 1 | 1 | 1 |
Information Access Cost (IAC) | 9 * 1.5 EO * 2s + 5.5 EO * 2s + 1.5 EO * 3s + 4 * 1.5 EO * 2s + 3 EO * 10s + 5 * 1.5 EO * 2s = 99.5 EOs | 1.5 EO * 10s + 1.5 EO * 2s + 1 EO * 1s + 3 EO * 5s + 1 EO * 1s + 3 EO * 3s + 5 * 1 EO * 1s + 3 EO * 5s + 1 EO * 1s + 1.5 EO * 2s = 59 EOs | 1.5 EO * 10s + 1.5 EO * 2s + 1 EO * 0.5s + 1.5 EO * 0.5s + 5.5 EO * 2s + 1.5 EO * 1s + 5.5 EO * 2s + 5.5 EO * 2s + 1.5 EO * 1s + 5 * 1 EO *1s + 3 EO * 5s + 1 EO * 1s + 1.5 EO * 2s = 79.25 EOs | 1.5 EO * 10s + 1.5 EO * 2s + 1 EO * 0.5s + 1.5 EO * 0.5s + 2 * 1 EO * 0.5s + 2 * 3 EO * 2s + 5 * 1 EO * 0.5s + 3 EO * 3s + 1.5 EO * 1s = 45.25 EOs |
Information Validity (IV) | 0.2 | 1 | 1 | 0.7 1 |
Confuse Information Content (CIC) | 0.8 | 0 | 0 | 0.3 |
Personalized workflow order ability (PWO) | 1 | 1 | 1 | 1 |
Personalized Information Overview (PIO) | 0 | 1 | 1 | 1 |
Task Execution Tools (TET) | 1 | 1 | 1 | 2 or more |
Degree of interaction (DI) | 4 | 9 | 9 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváth, I.; Berki, B. Investigating the Operational Complexity of Digital Workflows Based on Human Cognitive Aspects. Electronics 2023, 12, 528. https://doi.org/10.3390/electronics12030528
Horváth I, Berki B. Investigating the Operational Complexity of Digital Workflows Based on Human Cognitive Aspects. Electronics. 2023; 12(3):528. https://doi.org/10.3390/electronics12030528
Chicago/Turabian StyleHorváth, Ildikó, and Borbála Berki. 2023. "Investigating the Operational Complexity of Digital Workflows Based on Human Cognitive Aspects" Electronics 12, no. 3: 528. https://doi.org/10.3390/electronics12030528
APA StyleHorváth, I., & Berki, B. (2023). Investigating the Operational Complexity of Digital Workflows Based on Human Cognitive Aspects. Electronics, 12(3), 528. https://doi.org/10.3390/electronics12030528