Brain Emotional Learning Control Based on Radial Basis Function for Permanent Magnet Synchronous Motor
Abstract
:1. Introduction
2. Vector Control System for PMSM
3. Improved Brain Emotional Learning Control
3.1. Conventional BELC
3.2. RBF-Based Brain Emotional Learning Control
4. Simulation Verification
5. Experimental Verification
5.1. Experimental Setup
5.2. Comparative Performance Test of Speed Control
5.3. Comparative Performance Test of Torque Control
5.4. Comparative Performance Test of Current Control
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuruppu, S.S. Open-Loop Self-Calibration of Position Sensor Offset in SM-PMSM Drive Systems. IEEE Trans. Instrum. Meas. 2021, 70, 7502007. [Google Scholar] [CrossRef]
- Feng, G.D.; Lai, C.Y.; Kar, N.C. An Analytical Solution to Optimal Stator Current Design for PMSM Torque Ripple Minimization with Minimal Machine Losses. IEEE Trans. Ind. Electron. 2017, 64, 7655–7665. [Google Scholar] [CrossRef]
- Mercorelli, P. Control of Permanent Magnet Synchronous Motors for Track Applications. Electronics 2023, 12, 3285. [Google Scholar] [CrossRef]
- Zhang, K.; Fan, M.D.; Yang, Y.; Chen, R.; Zhu, Z.K.; Garcia, C.; Rodriguez, J. Tolerant Sequential Model Predictive Direct Torque Control of Permanent Magnet Synchronous Machine Drives. IEEE Trans. Transp. Electrif. 2020, 6, 1167–1176. [Google Scholar] [CrossRef]
- Niu, S.X.; Luo, Y.X.; Fu, W.N.; Zhang, X.D. An Indirect Reference Vector-Based Model Predictive Control for a Three-Phase PMSM Motor. IEEE Access 2020, 8, 29435–29445. [Google Scholar] [CrossRef]
- El-Sousy, F.F.M.; Alenizi, F.A.F. Optimal Adaptive Super-Twisting Sliding-Mode Control Using Online Actor-Critic Neural Networks for Permanent-Magnet Synchronous Motor Drives. IEEE Access 2021, 9, 82508–82534. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, R.; Xiao, R.; Liu, Z. Zero Common-Mode Voltage Model Predictive Torque Control Based on Virtual Voltage Vectors for the Dual Three-Phase PMSM Drive. Electronics 2022, 11, 3293. [Google Scholar] [CrossRef]
- Qu, C.; Hu, Y.; Guo, Z.; Han, F.; Wang, X. New Sliding Mode Control Based on Tracking Differentiator and RBF Neural Network. Electronics 2022, 11, 3135. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Z.Q. Fuzzy Logic Speed Control of Permanent Magnet Synchronous Machine and Feedback Voltage Ripple Reduction in Flux-Weakening Operation Region. IEEE Trans. Ind. Appl. 2020, 56, 1505–1517. [Google Scholar] [CrossRef]
- Nicola, C.I.; Nicola, M.; Selișteanu, D. Sensorless Control of PMSM Based on Backstepping-PSO-Type Controller and ESO-Type Observer Using Real-Time Hardware. Electronics 2021, 10, 2080. [Google Scholar] [CrossRef]
- Nazelan, A.M.; Osman, M.K.; Salim, N.A.; Samat, A.A.A.; Ahmad, K.A. PSO-Based PI Controller for Speed Sensorless Control of PMSM. J. Phys. Conf. Ser. 2018, 1019, 012027. [Google Scholar] [CrossRef]
- Song, Z.Q.; Yang, H.L. Intelligent Control for PMSM Based on Online PSO Considering Parameters Change. In Proceedings of the 2017 International Symposium on Application of Materials Science and Energy Materials (SAMSE 2017), Shanghai, China, 28–29 December 2017. [Google Scholar]
- Du, T.; Zeng, G.H.; Huang, B. PMSM Vector Control Based on Grasshopper Optimization Algorithm Variable Universe Fuzzy PI. Mod. Manuf. Eng. 2021, 487, 1–5+11. [Google Scholar]
- Soundirarrajan, N.; Srinivasan, K. Performance Evaluation of Ant Lion Optimizer–Based PID Controller for Speed Control of PMSM. J. Test. Eval. 2021, 49, 1104–1118. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, T.; Li, D.; Zhao, R.Y. Design of Motor Speed PID Controller Based on BP Neural Network. Equip. Manuf. Technol. 2020, 311, 21–24. [Google Scholar]
- Wang, W.L.; Pang, H.; Li, X.C.; Wu, Y.P.; Song, X.F. Research on Speed Control of Permanent Magnet Synchronous Motor Based on RBF Neural Network Tuning PID. J. Phys. Conf. Ser. 2022, 2264, 012018. [Google Scholar] [CrossRef]
- Ma, D.; Song, M.; Yu, P.; Li, J. Research of RBF-PID Control in Maglev System. Symmetry 2020, 12, 1780. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Ju, C.; Xue, X.; Zhang, J. A New Force Control Method by Combining Traditional PID Control with Radial Basis Function Neural Network for a Spacecraft Low-Gravity Simulation System. Aerospace 2023, 10, 520. [Google Scholar] [CrossRef]
- Ding, H.; Liu, S.; Wang, Z.; Zhang, H.; Wang, C. An ADRC Parameters Self-Tuning Controller Based on RBF Neural Network for Multi-Color Register System. Machines 2023, 11, 320. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Q.; Wang, Y.; Dong, Q. Multi-Motor Cooperative Control Strategy for Speed Synchronous Control of Construction Platform. Electronics 2022, 11, 4162. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, X.; Wang, D.; Wang, L.; Tu, Z.; Ai, J. Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV. Sensors 2022, 22, 9066. [Google Scholar] [CrossRef]
- You, D.; Lei, Y.; Liu, S.; Zhang, Y.; Zhang, M. Networked Control System Based on PSO-RBF Neural Network Time-Delay Prediction Model. Appl. Sci. 2023, 13, 536. [Google Scholar] [CrossRef]
- Zhou, J.; Xue, L.; Li, Y.; Cao, L.; Chen, C. A Novel Fuzzy Controller for Visible-Light Camera Using RBF-ANN: Enhanced Positioning and Autofocusing. Sensors 2022, 22, 8657. [Google Scholar] [CrossRef]
- Khorashadizadeh, S.; Zadeh, S.M.H.; Koohestani, M.R.; Shekofteh, S.; Erkaya, S. Robust Model-Free Control of a Class of Uncertain Nonlinear Systems Using BELBIC: Stability Analysis and Experimental Validation. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 311. [Google Scholar] [CrossRef]
- Qutubuddin, M.; Gibo, T.K.; Bapi, R.S.; Narri, Y. Brain Affective System Inspired Control Architecture: An Application to Nonlinear System. IEEE Access 2021, 9, 86565–86580. [Google Scholar] [CrossRef]
- Giernacki, W. Minimum Energy Control of Quadrotor UAV: Synthesis and Performance Analysis of Control System with Neurobiologically Inspired Intelligent Controller (BELBIC). Energies 2022, 15, 7566. [Google Scholar] [CrossRef]
- Rameshkumar, N.; Rahman, M.A.M.J.Z. Hybrid BELBIC based PV Powered Vector Controlled Induction Motor Drive. Asian J. Res. Social Sci. Humanities. 2016, 6, 994–1014. [Google Scholar] [CrossRef]
- Affan, M.; Uddin, R. Brain Emotional Learning and Adaptive Model Predictive Controller for Induction Motor Drive: A New Cascaded Vector Control Topology. Int. J. Control Autom. Syst. 2021, 19, 3122–3135. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.G.; Sheng, Y.B.; Yang, D.L.; Hu, L.K. Simplified emotion-based design of D-STATCOM controller. Electr. Mach. Control 2014, 18, 101–106. [Google Scholar]
Parameters | Unit | Numerical Value |
---|---|---|
Power rating | kW | 1.5 |
Rated speed | rpm | 1500 |
Rated current | A | 10 |
Polar logarithm | - | 4 |
Rotational inertia | kg·m2 | 0.00194 |
Rated torque | N·m | 10 |
Stator resistance | Ω | 1.29 |
d-axis inductance | mH | 2.53 |
q-axis inductance | mH | 2.53 |
Indexes | RBF-Based BELC | BELC | PI |
---|---|---|---|
Time of speed reaching stability (ms) | 8.2 | 18 | 22 |
Maximum speed error after stabilization (rpm) | 0.1 | 0.1 | 0.5 |
Speed overshoot (%) | 0 | 2.125 | 6.875 |
Speed drop after sudden loading (rpm) | 6 | 8 | 19 |
Speed recovery time after sudden loading (ms) | 7.1 | 9.3 | 8.6 |
Parameters | RBF-Based BELC | BELC | PI |
---|---|---|---|
Speed overshoot at start-up (%) | 2.75 | 7.25 | 19.25 |
Speed drop of sudden loading (%) | 1.75 | 2.5 | 4 |
Speed rise of abrupt no-load (%) | 2.5 | 6.5 | 10.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, B.; Liang, S.; Xiao, H. Brain Emotional Learning Control Based on Radial Basis Function for Permanent Magnet Synchronous Motor. Electronics 2023, 12, 4748. https://doi.org/10.3390/electronics12234748
Li W, Li B, Liang S, Xiao H. Brain Emotional Learning Control Based on Radial Basis Function for Permanent Magnet Synchronous Motor. Electronics. 2023; 12(23):4748. https://doi.org/10.3390/electronics12234748
Chicago/Turabian StyleLi, Wenjuan, Boyang Li, Shuwei Liang, and Han Xiao. 2023. "Brain Emotional Learning Control Based on Radial Basis Function for Permanent Magnet Synchronous Motor" Electronics 12, no. 23: 4748. https://doi.org/10.3390/electronics12234748
APA StyleLi, W., Li, B., Liang, S., & Xiao, H. (2023). Brain Emotional Learning Control Based on Radial Basis Function for Permanent Magnet Synchronous Motor. Electronics, 12(23), 4748. https://doi.org/10.3390/electronics12234748