RIS-Assisted Robust Beamforming for UAV Anti-Jamming and Eavesdropping Communications: A Deep Reinforcement Learning Approach
Abstract
:1. Introduction
1.1. Related Works
1.2. Contributions
- Considering the illegitimate nodes’ imperfect CSI, the joint optimization problem of power allocation at the BS and reflecting beamforming at the RIS is formulated to maximize the achievable system rate, while ensuring fulfillment of the security requirements.
- To cope with the non-convex and non-conventional optimization problem, we first used a robust method to process the imperfect CSI, and subsequently, the optimization problem was reformulated into a Markov decision process (MDP) framework. Then, a noisy dueling double-deep Q-network with prioritized experience replay (Noisy-D3QN-PER) algorithm with safety performance awareness is proposed, where the D3QN is the improvement of the DQN, the NoisyNet can be encouraged to avoid falling into local optima, and the PER accelerates the convergence.
- The numerical results indicated that the Noisy-D3QN-PER algorithm outperformed conventional approaches in improving the safety performance protection level and achievable sum rate. For example, the proposed algorithm improved the system rate and transmission protection level by 27.43% and 11.11%, respectively, compared to the conventional DQN of the benchmark scheme.
2. System Model and Problem Formulation
2.1. System Model
2.2. Problem Formulation
3. DRL-Based Algorithm Design
3.1. Robust Channel Processing
3.2. Overview of DRL
3.3. Joint Power Allocation and Reflecting Beamforming Using Noisy-D3QN-PER
Algorithm 1 Noisy-D3QN-PER algorithm |
Require: environment simulator, experience replay buffer , learning rate and , mini-batch size m.
|
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, H.; Du, J.; Zhao, H.; Luo, D.X.; Kumar, N.; Yang, L.; Yu, F.R. Resource-Ability Assisted Service Function Chain Embedding and Scheduling for 6G Networks With Virtualization. IEEE Trans. Veh. Technol. 2021, 70, 3846–3859. [Google Scholar] [CrossRef]
- Mukherjee, A.; Fakoorian, S.A.A.; Huang, J.; Swindlehurst, A.L. Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey. IEEE Commun. Surv. Tutorials 2014, 16, 1550–1573. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, J.; Wang, X.; Hanzo, L. A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends. Proc. IEEE 2016, 104, 1727–1765. [Google Scholar] [CrossRef]
- Feng, S.; Haykin, S. Cognitive Risk Control for Anti-Jamming V2V Communications in Autonomous Vehicle Networks. IEEE Trans. Veh. Technol. 2019, 68, 9920–9934. [Google Scholar] [CrossRef]
- Liang, L.; Cheng, W.; Zhang, W.; Zhang, H. Mode Hopping for Anti-Jamming in Radio Vortex Wireless Communications. IEEE Trans. Veh. Technol. 2018, 67, 7018–7032. [Google Scholar] [CrossRef]
- Yan, S.; Yang, N.; Land, I.; Malaney, R.; Yuan, J. Three Artificial-Noise-Aided Secure Transmission Schemes in Wiretap Channels. IEEE Trans. Veh. Technol. 2018, 67, 3669–3673. [Google Scholar] [CrossRef]
- Mayouche, A.; Spano, D.; Tsinos, C.G.; Chatzinotas, S.; Ottersten, B. Learning-Assisted Eavesdropping and Symbol-Level Precoding Countermeasures for Downlink MU-MISO Systems. IEEE Open J. Commun. Soc. 2020, 1, 535–549. [Google Scholar] [CrossRef]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfors, O. Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces. IEEE Trans. Signal Process. 2018, 66, 2746–2758. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, G.; Zhang, R. Secure Wireless Communication via Intelligent Reflecting Surface. IEEE Wirel. Commun. Lett. 2019, 8, 1410–1414. [Google Scholar] [CrossRef]
- Shen, H.; Xu, W.; Gong, S.; He, Z.; Zhao, C. Secrecy Rate Maximization for Intelligent Reflecting Surface Assisted Multi-Antenna Communications. IEEE Commun. Lett. 2019, 23, 1488–1492. [Google Scholar] [CrossRef]
- Dong, L.; Wang, H.-M. Secure MIMO Transmission via Intelligent Reflecting Surface. IEEE Wirel. Commun. Lett. 2020, 9, 787–790. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Luo, J.; Zhu, Y.; Zheng, G.; Chatzinotas, S. Intelligent Reflecting Surface Enhanced Secure Transmission Against Both Jamming and Eavesdropping Attacks. IEEE Trans. Veh. Technol. 2021, 70, 11017–11022. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Zhu, Y.; Zheng, G.; Wong, K.K.; Chatzinotas, S.; Yin, H.; Liu, P. RIS-Assisted Robust Hybrid Beamforming Against Simultaneous Jamming and Eavesdropping Attacks. IEEE Trans. Wirel. Commun. 2022, 21, 9212–9231. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Luo, J.; Zhu, Y.; Zheng, G.; Chatzinotas, S. Outage Constrained Robust Beamforming Optimization for Multiuser IRS-Assisted Anti-Jamming Communications With Incomplete Information. IEEE Internet Things J. 2022, 9, 13298–13314. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Wen, M.; Wu, Y.C. Secure Multicast Energy-Efficiency Maximization With Massive RISs and Uncertain CSI: First-Order Algorithms and Convergence Analysis. IEEE Trans. Wirel. Commun. 2022, 21, 6818–6833. [Google Scholar] [CrossRef]
- Guo, K.; An, K. On the Performance of RIS-Assisted Integrated Satellite-UAV-Terrestrial Networks With Hardware Impairments and Interference. J. Abbr. 2022, 11, 131–135. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, F.; Wang, B.; Wu, Q.; Dong, C.; Hu, R.Q. Unmanned Aerial Vehicle Swarm-Enabled Edge Computing: Potentials, Promising Technologies, and Challenges. IEEE Wirel. Commun. 2022, 29, 78–85. [Google Scholar] [CrossRef]
- Mei, C.; Fang, Y.; Qiu, L. Dual Based Optimization Method for IRS-Aided UAV-Enabled SWIPT System. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 890–895. [Google Scholar]
- Liu, Z.; Zhao, S.; Wu, Q.; Yang, Y.; Guan, X. Joint Trajectory Design and Resource Allocation for IRS-Assisted UAV Communications With Wireless Energy Harvesting. IEEE Commun. Lett. 2022, 26, 404–408. [Google Scholar] [CrossRef]
- Zhou, F.; Li, X.; Alazab, M.; Jhaveri, R.H.; Guo, K. Secrecy Performance for RIS-Based Integrated Satellite Vehicle Networks With a UAV Relay and MRC Eavesdropping. IEEE Trans. Intell. Veh. 2023, 8, 1676–1685. [Google Scholar] [CrossRef]
- Feng, K.; Wang, Q.; Li, X.; Wen, C.K. Deep Reinforcement Learning Based Intelligent Reflecting Surface Optimization for MISO Communication Systems. IEEE Wirel. Commun. Lett. 2020, 9, 745–749. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W. Intelligent Reflecting Surface Configurations for Smart Radio Using Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2022, 40, 2335–2346. [Google Scholar] [CrossRef]
- Omoniwa, B.; Galkin, B.; Dusparic, I. Communication-enabled deep reinforcement learning to optimise energy-efficiency in UAV-assisted networks. Veh. Commun. 2023, 43, 100640. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, Z.; Zhao, J.; Niyato, D.; Xiao, L.; Wu, Q. Deep Reinforcement Learning-Based Intelligent Reflecting Surface for Secure Wireless Communications. IEEE Trans. Wirel. Commun. 2021, 20, 375–388. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, Z.; Zhao, J.; Niyato, D.; Wu, Q.; Poor, H.V.; Tornatore, M. Intelligent Reflecting Surface Assisted Anti-Jamming Communications: A Fast Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2021, 20, 1963–1974. [Google Scholar] [CrossRef]
- Omoniwa, B.; Galkin, B.; Dusparic, I. Optimizing Energy Efficiency in UAV-Assisted Networks Using Deep Reinforcement Learning. IEEE Wirel. Commun. Lett. 2022, 11, 1590–1594. [Google Scholar] [CrossRef]
- Thanh, P.D.; Giang, H.T.H.; Hong, I.-P. Anti-Jamming RIS Communications Using DQN-Based Algorithm. IEEE Access 2022, 10, 28422–28433. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Zhu, Y.; Zheng, G.; Wong, K.K.; Chatzinotas, S.; Ng, D.W.K.; Guan, D. Energy-Efficient Hybrid Beamforming for Multilayer RIS-Assisted Secure Integrated Terrestrial-Aerial Networks. IEEE Trans. Commun. 2022, 70, 4189–4210. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, Y.; An, K.; Zheng, G.; Chatzinotas, S.; Wong, K.K.; Liu, P. Robust Design for RIS-Assisted Anti-Jamming Communications With Imperfect Angular Information: A Game-Theoretic Perspective. IEEE Trans. Veh. Technol. 2022, 71, 7967–7972. [Google Scholar] [CrossRef]
- Picard, R.W.; Papert, S.; Bender, W.; Blumberg, B.; Breazeal, C.; Cavallo, D.; Machover, T.; Resnick, M.; Roy, D.; Strohecker, C. Affective Learning—A Manifesto. BT Technol. J. 2004, 22, 253–269. [Google Scholar] [CrossRef]
- Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 387–395. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602. [Google Scholar]
- Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100. [Google Scholar]
- Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement learning. Proc. Mach. Learn. Res. 2016, 48, 1995–2003. [Google Scholar]
- Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.; et al. Noisy Networks for Exploration. arXiv 2017, arXiv:1706.10295. [Google Scholar]
- Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2015, arXiv:1511.05952. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Li, C.; Li, Y.; Yan, X. RIS-Assisted Robust Beamforming for UAV Anti-Jamming and Eavesdropping Communications: A Deep Reinforcement Learning Approach. Electronics 2023, 12, 4490. https://doi.org/10.3390/electronics12214490
Zou C, Li C, Li Y, Yan X. RIS-Assisted Robust Beamforming for UAV Anti-Jamming and Eavesdropping Communications: A Deep Reinforcement Learning Approach. Electronics. 2023; 12(21):4490. https://doi.org/10.3390/electronics12214490
Chicago/Turabian StyleZou, Chao, Cheng Li, Yong Li, and Xiaojuan Yan. 2023. "RIS-Assisted Robust Beamforming for UAV Anti-Jamming and Eavesdropping Communications: A Deep Reinforcement Learning Approach" Electronics 12, no. 21: 4490. https://doi.org/10.3390/electronics12214490
APA StyleZou, C., Li, C., Li, Y., & Yan, X. (2023). RIS-Assisted Robust Beamforming for UAV Anti-Jamming and Eavesdropping Communications: A Deep Reinforcement Learning Approach. Electronics, 12(21), 4490. https://doi.org/10.3390/electronics12214490