Automatic Modulation Classification with Deep Neural Networks
Abstract
:1. Introduction
2. Related Work
3. Dataset
- Amplitude: OOK, 4ASK, 8ASK, AM-SSB-SC, AM-SSB-WC, AM-DSB-WC, and AM-DSB-SC.
- Phase: BPSK, QPSK, 8PSK, 16PSK, 32PSK, and OQPSK.
- Amplitude and Phase: 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, and 256QAM.
- Frequency: FM and GMSK.
4. Initial Investigation
4.1. Architectural Changes
4.2. Initial Investigation Results
5. Ablation Study Architecture Background
5.1. Squeeze-and-Excitation Networks
5.2. Dilated Convolutions
5.3. Final Convolutional Activation
5.4. Self-Attention
6. Ablation Study Architecture
7. Evaluation Metrics
8. Ablation Results
8.1. Overall Performance
8.2. Accuracy over Varying SNR
8.3. Parameter Count Trade-Off
9. Best-Performing Model Investigation
9.1. Top-K Accuracy
9.2. Short-Duration Signal Bursts
9.3. Confusion Matrices
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Shea, T.; Roy, T.; Clancy, T.C. Over-the-Air Deep Learning Based Radio Signal Classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef]
- Jacob, P.; Sirigina, R.P.; Madhukumar, A.S.; Prasad, V.A. Cognitive Radio for Aeronautical Communications: A Survey. IEEE Access 2016, 4, 3417–3443. [Google Scholar] [CrossRef]
- Harper, C.A.; Sinha, A.; Thornton, M.A.; Larson, E.C. SNR-Boosted Automatic Modulation Classification. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; pp. 372–375. [Google Scholar]
- Soltani, N.; Sankhe, K.; Ioannidis, S.; Jaisinghani, D.; Chowdhury, K. Spectrum awareness at the edge: Modulation classification using smartphones. In Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, 11–14 November 2019; pp. 1–10. [Google Scholar]
- Swami, A.; Sadler, B. Hierarchical Digital Modulation Classification using Cumulants. IEEE Trans. Commun. 2000, 48, 416–429. [Google Scholar] [CrossRef]
- Abdelbar, M.; Tranter, W.H.; Bose, T. Cooperative Cumulants-Based Modulation Classification in Distributed Networks. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 446–461. [Google Scholar] [CrossRef]
- Harper, C.A.; Lyons, L.; Thornton, M.A.; Larson, E.C. Enhanced Automatic Modulation Classification Using Deep Convolutional Latent Space Pooling. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–4 November 2020. [Google Scholar]
- O’Shea, T.; Corgan, J.; Clancy, T. Convolutional Radio Modulation Recognition Networks. In Proceedings of the International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2–5 September 2016; pp. 213–226. [Google Scholar]
- Huynh-The, T.; Hua, C.H.; Kim, J.W.; Kim, S.H.; Kim, D.S. Exploiting a Low-Cost CNN with Skip Connection for Robust Automatic Modulation Classification. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Yao, Y. Modulation Classification using Convolutional Neural Network Based Deep Learning Model. In Proceedings of the 2017 26th Wireless and Optical Communication Conference (WOCC), Newark, NJ, USA, 7–8 April 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y. Modulation Classification Based on Signal Constellation Diagrams and Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 718–727. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Chen, X. Graphic Constellations and DBN Based Automatic Modulation Classification. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Dulek, B. A Sparse Approach for Identification of Signal Constellations Over Additive Noise Channels. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 817–822. [Google Scholar] [CrossRef]
- Hassan, K.; Dayoub, I.; Hamouda, W.; Nzeza, C.N.; Berbineau, M. Blind Digital Modulation Identification for Spatially-Correlated MIMO Systems. IEEE Trans. Wirel. Commun. 2012, 11, 683–693. [Google Scholar] [CrossRef]
- Abdelbar, M.; Tranter, B.; Bose, T. Cooperative Modulation Classification of Multiple Signals in Cognitive Radio Networks. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 1483–1488. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, Y.; Li, H.; Song, Z. Distributed Cooperative Automatic Modulation Classification Using DWA-ADMM in Wireless Communication Networks. Electronics 2023, 12, 3002. [Google Scholar] [CrossRef]
- Ren, B.; Teh, K.C.; An, H.; Gunawan, E. Automatic Modulation Recognition of Dual-Component Radar Signals Using ResSwinT-SwinT Network. IEEE Trans. Aerosp. Electron. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Alzaq-Osmanoglu, H.; Alrehaili, J.; Ustundag, B.B. Low-SNR Modulation Recognition based on Deep Learning on Software Defined Radio. In Proceedings of the 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 12–14 December 2022; pp. 1–6. [Google Scholar]
- Wang, Y.; Liu, M.; Yang, J.; Gui, G. Data-Driven Deep Learning for Automatic Modulation Recognition in Cognitive Radios. IEEE Trans. Veh. Technol. 2019, 68, 4074–4077. [Google Scholar] [CrossRef]
- Meng, F.; Chen, P.; Wu, L.; Wang, X. Automatic Modulation Classification: A Deep Learning Enabled Approach. IEEE Trans. Veh. Technol. 2018, 67, 10760–10772. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Yang, X.; Jiang, Y.; Wu, Z. Intelligent Denoising-Aided Deep Learning Modulation Recognition With Cyclic Spectrum Features for Higher Accuracy. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3749–3757. [Google Scholar] [CrossRef]
- DeepSig Incorporated. RF Datasets for Machine Learning. 2018. Available online: https://www.deepsig.ai/datasets (accessed on 29 April 2021).
- Liu, D.; Wang, P.; Wang, T.; Abdelzaher, T. Self-Contrastive Learning based Semi-Supervised Radio Modulation Classification. In Proceedings of the MILCOM 2021-2021 IEEE Military Communications Conference (MILCOM), San Diego, CA, USA, 29 November–2 December 2021; pp. 777–782. [Google Scholar]
- Chen, Z.; Cui, H.; Xiang, J.; Qiu, K.; Huang, L.; Zheng, S.; Chen, S.; Xuan, Q.; Yang, X. SigNet: A Novel Deep Learning Framework for Radio Signal Classification. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 529–541. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Ma, L.; Yang, Y.; Wang, H. Multidimensional CNN-LSTM network for automatic modulation classification. Electronics 2021, 10, 1649. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Gao, S.; Zheng, S.; Yu, S.; Xuan, Q.; Lou, C.; Yang, X. EMD and VMD Empowered Deep Learning for Radio Modulation Recognition. IEEE Trans. Cogn. Commun. Netw. 2022, 9, 43–57. [Google Scholar] [CrossRef]
- Uppal, A.J.; Hegarty, M.; Haftel, W.; Sallee, P.A.; Cribbs, H.B.; Huang, H.H. High-Performance Deep Learning Classification for Radio Signals. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019. [Google Scholar]
- Park, C.; Choi, J.; Nah, S.; Jang, W.; Kim, D.Y. Automatic Modulation Recognition of Digital Signals using Wavelet Features and SVM. In Proceedings of the 2008 10th International Conference on Advanced Communication Technology, Gangwon, Republic of Korea, 17–20 February 2008; Volume 1, pp. 387–390. [Google Scholar] [CrossRef]
- Teng, X.; Tian, P.; Yu, H. Modulation Classification Based on Spectral Correlation and SVM. In Proceedings of the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–14 October 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Gan, C.; Sun, S.; Wang, M. Automatic Modulation Classification Using Convolutional Neural Network With Features Fusion of SPWVD and BJD. IEEE Trans. Signal Inf. Process. Netw. 2019, 5, 469–478. [Google Scholar] [CrossRef]
- Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion Methods for CNN-Based Automatic Modulation Classification. IEEE Access 2019, 7, 66496–66504. [Google Scholar] [CrossRef]
- Mao, Y.; Dong, Y.Y.; Sun, T.; Rao, X.; Dong, C.X. Attentive Siamese Networks for Automatic Modulation Classification Based on Multitiming Constellation Diagrams. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 5988–6002. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Tridgell, S. Low Latency Machine Learning on FPGAs. Ph.D. Thesis, The University of Sydney Australia, Sydney, NSW, Australia, 2019. [Google Scholar]
- Mendis, G.J.; Wei-Kocsis, J.; Madanayake, A. Deep Learning Based Radio-Signal Identification With Hardware Design. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2516–2531. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, D.; Gong, K.; Wang, W.; Sun, P. A Lightweight CNN Architecture for Automatic Modulation Classification. Electronics 2021, 10, 2679. [Google Scholar] [CrossRef]
- Snyder, D.; Garcia-Romero, D.; Sell, G.; Povey, D.; Khudanpur, S. X-vectors: Robust DNN Embeddings for Speaker Recognition. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 5329–5333. [Google Scholar]
- Li, L.; Dong, Z.; Zhu, Z.; Jiang, Q. Deep-Learning Hopping Capture Model for Automatic Modulation Classification of Wireless Communication Signals. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 772–783. [Google Scholar] [CrossRef]
- McNemar, Q. Note on the Sampling Error of the Difference Between Correlated Proportions or Percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef]
- Cai, J.; Gan, F.; Cao, X.; Liu, W. Signal Modulation Classification Based on the Transformer Network. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1348–1357. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–515. [Google Scholar]
- Zhang, H.; Zhou, F.; Wu, Q.; Wu, W.; Hu, R.Q. A Novel Automatic Modulation Classification Scheme Based on Multi-Scale Networks. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 97–110. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, Y.; Li, Y.; Ding, W.; Zhang, B. High-Order Convolutional Attention Networks for Automatic Modulation Classification in Communication. IEEE Trans. Wirel. Commun. 2022, 22, 4600–4610. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Chollet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2021. [Google Scholar]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Okabe, K.; Koshinaka, T.; Shinoda, K. Attentive Statistics Pooling for Deep Speaker Embedding. In Proceedings of the Interspeech 2018, Hyderabad, India, 2–6 September 2018; pp. 2252–2256. [Google Scholar] [CrossRef]
- Safari, P.; India, M.; Hernando, J. Self-Attention Encoding and Pooling for Speaker Recognition. In Proceedings of the Interspeech 2020, Shanghai, China, 25–29 October 2020; pp. 941–945. [Google Scholar] [CrossRef]
- Sammit, G.; Wu, Z.; Wang, Y.; Wu, Z.; Kamata, A.; Nese, J.; Larson, E.C. Automated prosody classification for oral reading fluency with quadratic kappa loss and attentive x-vectors. In Proceedings of the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Huynh-The, T.; Pham, Q.V.; Nguyen, T.V.; Nguyen, T.T.; Costa, D.B.d.; Kim, D.S. RanNet: Learning Residual-Attention Structure in CNNs for Automatic Modulation Classification. IEEE Wirel. Commun. Lett. 2022, 11, 1243–1247. [Google Scholar] [CrossRef]
AMC Model | Training Range (dB) | Employed during Inference (dB) |
---|---|---|
MC 1 | [−20, −8] | (, −8) |
MC 2 | [−8, −4] | [−8, −4) |
MC 3 | [−4, 0] | [−4, 0) |
MC 4 | [0, 4] | [0, 4) |
MC 5 | [4, 8] | [4, 8) |
MC 6 | [8, 30] | [8, ∞) |
Notes | # Params | Avg. Accuracy | Max Accuracy |
---|---|---|---|
Reproduced ResNet [1] | 165,144 | 59.2% | 93.7% |
X-Vector [7] | 110,680 | 61.3% | 98.0% |
More Filters (Same Filter Sizes) | 149,168 | 61.0% | 96.1% |
Larger Filter Sizes (Same # Filters) | 143,960 | 62.6% | 98.2% |
Combined | 174,000 | 62.9% | 98.6% |
Model Name | Notes | SENet | Dilated Convolutions | Final Activation | Attention | # Params | Avg. Accuracy | Max Accuracy |
---|---|---|---|---|---|---|---|---|
— | Reproduced ResNet [1] | — | — | — | — | 165,144 | 59.2% | 93.7% |
— | X-Vector [7] | — | — | — | — | 110,680 | 61.3% | 98.0% |
0000 | Best-performing model from the initial investigation | — | — | — | — | 174,000 | 62.9% | 98.6% |
0001 | — | — | — | ✓ | 221,088 | 62.3% | 97.6% | |
0010 | — | — | ✓ | — | 174,000 | 62.8% | 98.6% | |
0011 | — | — | ✓ | ✓ | 221,088 | 62.3% | 97.5% | |
0100 | — | ✓ | — | — | 174,000 | 63.2% | 98.9% | |
0101 | — | ✓ | — | ✓ | 221,088 | 63.1% | 97.9% | |
0110 | — | ✓ | ✓ | — | 174,000 | 63.2% | 98.9% | |
0111 | — | ✓ | ✓ | ✓ | 221,088 | 63.0% | 98.0% | |
1000 | ✓ | — | — | — | 202,880 | 62.9% | 98.5% | |
1001 | ✓ | — | — | ✓ | 249,968 | 62.6% | 98.2% | |
1010 | ✓ | — | ✓ | — | 202,880 | 62.6% | 98.3% | |
1011 | ✓ | — | ✓ | ✓ | 249,968 | 62.8% | 98.1% | |
1100 | ✓ | ✓ | — | — | 202,880 | 62.8% | 98.2% | |
1101 | ✓ | ✓ | — | ✓ | 249,968 | 63.0% | 97.7% | |
1110 | Overall best performing model | ✓ | ✓ | ✓ | — | 202,880 | 63.7% | 98.9% |
1111 | ✓ | ✓ | ✓ | ✓ | 249,968 | 63.0% | 97.8% |
Model Name | Notes | SENet | Dilated Convolutions | Final Activation | Attention | # Params | Avg. Accuracy | Max Accuracy |
---|---|---|---|---|---|---|---|---|
— | X-Vector [7] | — | — | — | — | 110,680 | 61.3% | 98.0% |
0000 | — | — | — | — | 174,000 | 62.9% | 98.6% | |
0001 | — | — | — | ✓ | 221,088 | 62.3% | 97.6% | |
0010 | — | — | ✓ | — | 174,000 | 62.8% | 98.6% | |
0100 | — | ✓ | — | — | 174,000 | 63.2% | 98.9% | |
1000 | ✓ | — | — | — | 202,880 | 62.9% | 98.5% | |
1110 | Best-performer | ✓ | ✓ | ✓ | — | 202,880 | 63.7% | 98.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, C.A.; Thornton, M.A.; Larson, E.C. Automatic Modulation Classification with Deep Neural Networks. Electronics 2023, 12, 3962. https://doi.org/10.3390/electronics12183962
Harper CA, Thornton MA, Larson EC. Automatic Modulation Classification with Deep Neural Networks. Electronics. 2023; 12(18):3962. https://doi.org/10.3390/electronics12183962
Chicago/Turabian StyleHarper, Clayton A., Mitchell A. Thornton, and Eric C. Larson. 2023. "Automatic Modulation Classification with Deep Neural Networks" Electronics 12, no. 18: 3962. https://doi.org/10.3390/electronics12183962