High-Resolution Indoor Sensing Using Channel State Information of WiFi Networks
Abstract
:1. Introduction
2. Data Processing and Method
2.1. Data Acquisition
2.2. Data Processing
2.2.1. Data Sorting and Initial Phase Sanitization
2.2.2. Removing CSI Static Component
2.2.3. Eliminating Outliers
2.2.4. Kalman-Filter-Based Noise Reduction
2.3. Methods
2.3.1. The Minimum Entropy Method
2.3.2. Instantaneous Phase-Based Estimation Method
2.3.3. Angle of Arrival Estimation
3. Results and Discussion
3.1. Data-Processing Results
3.1.1. Calibration of CSI Phase
3.1.2. Low Rank Decomposition
3.1.3. Outlier Removal
3.1.4. Applying the Kalman Filter
3.2. Accurate Extraction of Respiratory Signs
3.3. AoA Estimation
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- Temiz, M.; Alsusa, E.; Baidas, M.W. A Dual-Functional Massive MIMO OFDM Communication and Radar Transmitter Architecture. IEEE Trans. Veh. Technol. 2020, 69, 14974–14988. [Google Scholar] [CrossRef]
- Temiz, M.; Alsusa, E.; Baidas, M.W. Optimized Precoders for Massive MIMO OFDM Dual Radar-Communication Systems. IEEE Trans. Commun. 2021, 69, 4781–4794. [Google Scholar] [CrossRef]
- Adib, F.; Mao, H.; Kabelac, Z.; Katabi, D.; Miller, R.C. Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; pp. 837–846. [Google Scholar] [CrossRef]
- Nguyen, P.; Transue, S.; Choi, M.H.; Halbower, A.C.; Vu, T. WiKiSpiro: Non-contact respiration volume monitoring during sleep. In Proceedings of the Eighth Wireless of the Students, New York, NY, USA, 3–7 October 2016; pp. 27–29. [Google Scholar] [CrossRef]
- Nguyen, P.; Zhang, X.; Halbower, A.; Vu, T. Continuous and fine-grained breathing volume monitoring from afar using wireless signals. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Lien, J.; Gillian, N.; Karagozler, M.E.; Amihood, P.; Schwesig, C.; Olson, E.; Raja, H.; Poupyrev, L. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 2016, 35, 1–19. [Google Scholar] [CrossRef]
- Caccami, M.C.; Miozzi, C.; Mulla, M.Y.S.; Di Natale, C.; Marrocco, G. An epidermal graphene oxide-based RFID sensor for the wireless analysis of human breath. In Proceedings of the 2017 IEEE International Conference on RFID Technology & Application (RFID-TA), Warsaw, Poland, 20–22 September 2017; pp. 191–195. [Google Scholar] [CrossRef]
- Amendola, S.; Bovesecchi, G.; Palombi, A.; Coppa, P.; Marrocco, G. Design, Calibration and Experimentation of an Epidermal RFID Sensor for Remote Temperature Monitoring. IEEE Sens. J. 2016, 40, 7250–7257. [Google Scholar] [CrossRef]
- Caccami, M.C.; Mulla, M.Y.S.; Occhiuzzi, C.; Di Natale, C.; Marrocco, G. Design and Experimentation of a Batteryless On-Skin RFID Graphene-Oxide Sensor for the Monitoring and Discrimination of Breath Anomalies. IEEE Sens. J. 2018, 18, 8893–8901. [Google Scholar] [CrossRef]
- Shi, S.; Xie, Y.; Li, M.; Liu, A.X.; Zhao, J. Synthesizing Wider WiFi Bandwidth for Respiration Rate Monitoring in Dynamic Environments. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 181–189. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, F.; Lu, X.; Lin, N.; Zhang, B.; Liu, Z.; Sigg, S. Contactless Body Movement Recognition During Sleep via WiFi Signals. IEEE Internet Things J. 2022, 7, 2028–2037. [Google Scholar] [CrossRef]
- Adib, F.; Katabi, D. See through walls with WiFi! In Proceedings of the Association for Computing Machinery, Hong Kong, China, 12–16 August 2013; pp. 75–86. [Google Scholar] [CrossRef]
- Zhu, H.; Xiao, F.; Sun, L.; Wang, R.; Yang, P. R-TTWD: Robust Device-Free Through-The-Wall Detection of Moving Human with WiFi. IEEE J. Sel. Areas Commun. 2017, 35, 1090–1103. [Google Scholar] [CrossRef]
- Wu, X.; Chu, Z.; Yang, P.; Xiang, C.; Zheng, X.; Huang, W. TW-See: Human Activity Recognition Through the Wall with Commodity Wi-Fi Devices. IEEE Trans. Veh. Technol. 2019, 68, 306–319. [Google Scholar] [CrossRef]
- Lv, J.; Man, D.; Yang, W.; Du, X.; Yu, M. Robust WLAN-based indoor intrusion detection using PHY layer information. IEEE Access 2018, 6, 30117–30127. [Google Scholar] [CrossRef]
- Seifeldin, M.; Saeed, A.; Kosba, A.E. Nuzzer: A Large-Scale Device-Free Passive Localization System for Wireless Environments. IEEE Trans. Mobile Comput. 2013, 12, 1321–1334. [Google Scholar] [CrossRef]
- Patwari, N.; Brewer, L.; Tate, Q. Breathfinding: A Wireless Network That Monitors and Locates Breathing in a Home. IEEE J. Sel. Top. Signal Process. 2014, 8, 30–42. [Google Scholar] [CrossRef]
- Pu, Q.F.; Upta, S.; Gollakota, S. Whole-home Gesture Recognition Using Wireless Signals. In Proceedings of the 19th Annual International Conference on Mobile Computing and Networking, Miami, FL, USA, 30 September–4 October 2013; pp. 27–38. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Chen, Y.Y. E-eyes: Device-free location-oriented activity identification using fine-grained WiFi signatures. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 617–628. [Google Scholar] [CrossRef]
- Abdelnasser, H.; Youssef, M.; Harras, K.A. WiGest: A ubiquitous WiFi-based gesture recognition system. In Proceedings of the 2015 IEEE Conference on Computer Communications, Hong Kong, China, 26 April–1 May 2015; pp. 1472–1480. [Google Scholar] [CrossRef]
- Qian, K.; Wu, C.S.; Yang, Z. Enabling Contactless Detection of Moving Humans with Dynamic Speeds Using CSI. ACM Trans. Embed. Comput. Syst. 2018, 17, 1–18. [Google Scholar] [CrossRef]
- Ibrahim, M.; Brown, K.N. Vehicle In-Cabin Contactless WiFi Human Sensing. 2021 18th Annual IEEE International Conference on Sensing. In Proceedings of the Communication, and Networking (SECON), Rome, Italy, 6–9 July 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, X.; Liu, Z.; Ren, F. WiFi-Based Real-Time Breathing and Heart Rate Monitoring during Sleep. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ali, K.; Alloulah, M.; Kawsar, F.; Liu, A.X. On Goodness of WiFi Based Monitoring of Sleep Vital Signs in the Wild. IEEE Trans. Mobile Comput. 2023, 22, 341–355. [Google Scholar] [CrossRef]
- Xie, W. A Real-time Respiration Monitoring System UsingWiFi-Based Radar Model. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 2082–2086. [Google Scholar]
- Wang, X.; Yang, C.; Mao, S. Resilient Respiration Rate Monitoring With Realtime Bimodal CSI Data. IEEE Sens. J. 2020, 20, 10187–10198. [Google Scholar] [CrossRef]
- Bao, N. Wi-Breath: A WiFi-based Contactless and Real-time Respiration Monitoring Scheme for Remote Healthcare. IEEE J. Biomed. Health Inform. 2023, 27, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Khamis, A.; Kusy, B.; Chou, C.T.; Hu, W. WiRelax: Towards real-time respiratory biofeedback during meditation using WiFi. Ad Hoc Netw. 2020, 107, 2–14. [Google Scholar] [CrossRef]
- Alsaify, B.A.; Almazari, M.M.; Alazrai, R.; Daoud, M.I. A dataset for WiFi-based human activity recognition in line-of-sight and non-line-of-sight indoor environments. DIB 2020, 33, 5–14. [Google Scholar] [CrossRef]
- Chen, J.; Ou, G.; Peng, A.; Zheng, L.; Shi, J. An INS/WiFi Indoor Localization System Based on the Weighted Least Squares. Sensors 2018, 18, 1458. [Google Scholar] [CrossRef] [PubMed]
- Tuta, J.; Juric, M.B. A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method. Sensors 2016, 16, 2074. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, Y.; Ge, Z.; Lu, C. Refining Wi-Fi based indoor localization with Li-Fi assisted model calibration in smart buildings. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering, Osaka, Japan, 6–8 July 2016; pp. 1358–1365. [Google Scholar] [CrossRef]
- Hernández, N.; Ocaña, M.; Alonso, J.M.; Kim, E. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort. Sensors 2017, 17, 147. [Google Scholar] [CrossRef] [PubMed]
Symbol | Category | Range |
---|---|---|
E | Environment | {1, 2, 3} |
S | Subject | {1, 2, 3, …, 30} |
C | Experiment Class | {1, 2, 3, 4, 5} |
A | Activity | {1, 2, 3, …, 12} |
T | Trial | {1, 2, 3, …, 20} |
Work | Respiratory Rate Calculation | AOA | Signal Selection Method | Respiration Estimation Method |
---|---|---|---|---|
[26] | yes | no | no | STFT-based respiration estimation |
[27] | yes | no | Signal Selection Algorithm | Peak-to-peak detection |
[28] | yes | no | The SVM Classifier | Peak-to-peak detection |
[29] | yes | no | The High Variance | Phase difference respiratory rate estimation |
This work | yes | yes | The Minimum Entropy | Phase difference respiratory rate estimation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Zhang, Y.; Temiz, M. High-Resolution Indoor Sensing Using Channel State Information of WiFi Networks. Electronics 2023, 12, 3931. https://doi.org/10.3390/electronics12183931
Zhou H, Zhang Y, Temiz M. High-Resolution Indoor Sensing Using Channel State Information of WiFi Networks. Electronics. 2023; 12(18):3931. https://doi.org/10.3390/electronics12183931
Chicago/Turabian StyleZhou, Hongjian, Yongwei Zhang, and Murat Temiz. 2023. "High-Resolution Indoor Sensing Using Channel State Information of WiFi Networks" Electronics 12, no. 18: 3931. https://doi.org/10.3390/electronics12183931
APA StyleZhou, H., Zhang, Y., & Temiz, M. (2023). High-Resolution Indoor Sensing Using Channel State Information of WiFi Networks. Electronics, 12(18), 3931. https://doi.org/10.3390/electronics12183931