Advances in Artificial Intelligence, Machine Learning and Deep Learning Applications
List of Contributions
- 1.
- S.-B. Zhou, R.-R. Chen, X.-Q. Jiang, and F. Pan, “2s-GATCN: Two-Stream Graph Attentional Convolutional Networks for Skeleton-Based Action Recognition”
- 2.
- Y. Zhang and H. Cai, “Sequence Segmentation Attention Network for Skeleton-Based Action Recognition”
- 3.
- S. Wu, Z. Li, S. Li, Q. Liu, and W. Wu, “Static Gesture Recognition Algorithm Based on Improved YOLOv5s”
- 4.
- S. Wu, X. Wang, and C. Guo, “Application of Feature Pyramid Network and Feature Fusion Single Shot Multibox Detector for Real-Time Prostate Capsule Detection”
- 5.
- J. Guo, Z. Wang, and S. Zhang, “FESSD: Feature Enhancement Single Shot MultiBox Detector Algorithm for Remote Sensing Image Target Detection”
- 6.
- Y. Chen, W. Zhan, Y. Jiang, D. Zhu, R. Guo, and X. Xu, “LASNet: A Light-Weight Asymmetric Spatial Feature Network for Real-Time Semantic Segmentation”
- 7.
- X. He, Q. Li, R. Wang, and K. Chen, “A Spatio-Temporal Feature Trajectory Clustering Algorithm Based on Deep Learning”
- 8.
- K. Li, D. Yang, and Y. Ma, “Image Style Transfer Based on Dynamic Convolutional Manifold Alignment of Halo Attention”
- 9.
- G. Elkhawaga, O. Elzeki, M. Abuelkheir, and M. Reichert, “Evaluating Explainable Artificial Intelligence Methods Based on Feature Elimination: A Functionality-Grounded Approach”
- 10.
- X. Liao, T. Zhou, L. Zhang, X. Hu, and Y. Peng, “A Method for Calculating the Derivative of Activation Functions Based on Piecewise Linear Approximation”
- 11.
- T. R. Jossou, Z. Tahori, G. Houdji, D. Medenou, A. Lasfar, F. Sanya, M. H. Ahouandjinou, S M. Pagliara, M. S. Haleem and A. Et-Tahir, “N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy”
- 12.
- X. Chen, H. Chen, Y. Peng, L. Liu, and C. Huang, “A Freehand 3D Ultrasound Reconstruction Method Based on Deep Learning”
- 13.
- E. Iadanza, G. Benincasa, I. Ventisette, and M. Gherardelli, “Automatic classification of hospital settings through artificial intelligence”
- 14.
- J. E. Camacho-Cogollo, I. Bonet, B. Gil, and E. Iadanza, “Machine Learning Models for Early Prediction of Sepsis on Large Healthcare Dataset”
- 15.
- A. S.-Y. Lien, C.-Y. Lai, J.-D. Wei, H.-M. Yang, J.-T. Yeh, and H.-C. Tai, “A Granulation Tissue Detection Model to Track Chronic Wound Healing in DM Foot Ulcers”
- 16.
- M. S. Haleem, A. Ekuban, A. Antonini, S. Pagliara, L. Pecchia, and C. Allocca, “Deep-Learning-Driven Techniques for Real-Time Multimodal Health and Physical Data Synthesis”
- 17.
- Q. Li, W. Zhang, M. Huang, S. Feng, and Y. Wu, “RSP-DST: Revisable State Prediction for Dialogue State Tracking”
- 18.
- W. Jiang, C. Sun, F. Chen, Y. Leng, Q. Guo, J. Sun and J. Peng, “Low Complexity Speech Enhancement Network Based on Frame-Level Swin Transformer”
- 19.
- B. Liu, H. Yu, J. Du, Y. Wu, Y. Li, Z. Zhu and Z. Wang, “Specific Emitter Identification Based on Self-Supervised Contrast Learning”
- 20.
- D. K. Sharma, B. Singh, S. Agarwal, H. Kim, and R. Sharma, “Sarcasm Detection over Social Media Platforms Using Hybrid Auto-Encoder-Based Model”
- 21.
- N. Zhong, G. Zhou, W. Ding, and J. Zhang, “A Rumor Detection Method Based on Multimodal Feature Fusion by a Joining Aggregation Structure”
- 22.
- H. Alhakami, W. Alhakami, A. Baz, M. Faizan, M. W. Khan, and A. Agrawal, “Evaluating Intelligent Methods for Detecting COVID-19 Fake News on Social Media Platforms”
- 23.
- S. Gadal, R. Mokhtar, M. Abdelhaq, R. Alsaqour, E. S. Ali, and R. Saeed, “Machine Learning-Based Anomaly Detection Using K-Mean Array and Sequential Minimal Optimization”
- 24.
- X. Zhang, M. Zhao, J. Wang, S. Li, Y. Zhou, and S. Zhu, “Deep-Forest-Based Encrypted Malicious Traffic Detectio”
- 25.
- G. Li, Z. Yang, H. Wan, and M. Li, “Anomaly-PTG: A Time Series Data-Anomaly-Detection Transformer Framework in Multiple Scenarios”
- 26.
- Y. Lei, S. L. Wang, M. Zhong, M. Wang, and T. F. Ng, “A Federated Learning Framework Based on Incremental Weighting and Diversity Selection for Internet of Vehicles”
- 27.
- Y. Fu, D. Guo, Q. Li, L. Liu, S. Qu, and W. Xiang, “Digital Twin Based Network Latency Prediction in Vehicular Networks”
- 28.
- H.-C. Lin, P. Wang, K.-M. Chao, W.-H. Lin, and J.-H. Chen, “Using Deep Learning Networks to Identify Cyber Attacks on Intrusion Detection for In-Vehicle Networks”
- 29.
- S. Safavi, M. Jalali, and M. Houshmand, “Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-Learning Approaches”
- 30.
- Z. Hu, F. Shao, and R. Sun, “A New Perspective on Traffic Flow Prediction: A Graph Spatial-Temporal Network with Complex Network Information”
- 31.
- Y. Wu, H. Yu, J. Du, B. Liu, and W. Yu, “An Aircraft Trajectory Prediction Method Based on Trajectory Clustering and a Spatiotemporal Feature Network”.
- 32.
- C. Zhong, Y. Jiang, L. Wang, J. Chen, J. Zhou, T. Hong and F. Zheng, “Improved MLP Energy Meter Fault Diagnosis Method Based on DBN”
- 33.
- H. Liu, G. Yuan, L. Yang, K. Liu, and H. Zhou, “An Appearance Defect Detection Method for Cigarettes Based on C-CenterNet”
- 34.
- M. Khan, M. R. Naeem, E. A. Al-Ammar, W. Ko, H. Vettikalladi, and I. Ahmad, “Power Forecasting of Regional Wind Farms via Variational Auto-Encoder and Deep Hybrid Transfer Learning”
- 35.
- T. H. Noor, A. Noor, and M. Elmezain, “Poisonous Plants Species Prediction Using a Convolutional Neural Network and Support Vector Machine Hybrid Model”
- 36.
- L. Li, Z. Wang, and T. Zhang, “GBH-YOLOv5: Ghost Convolution with BottleneckCSP and Tiny Target Prediction Head Incorporating YOLOv5 for PV Panel Defect Detection”
- 37.
- P. Cong, K. Lv, H. Feng, and J. Zhou, “Improved YOLOv3 Model for Workpiece Stud Leakage Detection”
- 38.
- T. Wang, J. Su, C. Xu, and Y. Zhang, “An Intelligent Method for Detecting Surface Defects in Aluminium Profiles Based on the Improved YOLOv5 Algorithm”
Conflicts of Interest
References
- Khojaste-Sarakhsi, M.; Haghighi, S.S.; Ghomi, S.F.; Marchiori, E. Deep learning for Alzheimer’s disease diagnosis: A survey. Artif. Intell. Med. 2022, 130, 102332. [Google Scholar] [CrossRef] [PubMed]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine learning in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef] [PubMed]
- Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine learning for healthcare wearable devices: The big picture. J. Healthc. Eng. 2022, 2022, 4653923. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H.; Khan, A.I.; Abushark, Y.B.; Alsolami, F. Internet of things (iot) security intelligence: A comprehensive overview, machine learning solutions and research directions. Mob. Netw. Appl. 2022. [Google Scholar] [CrossRef]
- Machlev, R.; Heistrene, L.; Perl, M.; Levy, K.Y.; Belikov, J.; Mannor, S.; Levron, Y. Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities. Energy AI 2022, 9, 100169. [Google Scholar] [CrossRef]
- Li, I.; Pan, J.; Goldwasser, J.; Verma, N.; Wong, W.P.; Nuzumlalı, M.Y.; Rosand, B.; Li, Y.; Zhang, M.; Chang, D.; et al. Neural natural language processing for unstructured data in electronic health records: A review. Comput. Sci. Rev. 2022, 46, 100511. [Google Scholar] [CrossRef]
- Dhal, P.; Azad, C. A comprehensive survey on feature selection in the various fields of machine learning. Appl. Intell. 2022, 52, 4543–4581. [Google Scholar] [CrossRef]
- Kreuzberger, D.; Kühl, N.; Hirschl, S. Machine learning operations (mlops): Overview, definition, and architecture. IEEE Access 2023, 11, 31866–31879. [Google Scholar] [CrossRef]
- Lim, W.M.; Gunasekara, A.; Pallant, J.L.; Pallant, J.I.; Pechenkina, E. Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. Int. J. Manag. Educ. 2023, 21, 100790. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haleem, M.S. Advances in Artificial Intelligence, Machine Learning and Deep Learning Applications. Electronics 2023, 12, 3780. https://doi.org/10.3390/electronics12183780
Haleem MS. Advances in Artificial Intelligence, Machine Learning and Deep Learning Applications. Electronics. 2023; 12(18):3780. https://doi.org/10.3390/electronics12183780
Chicago/Turabian StyleHaleem, Muhammad Salman. 2023. "Advances in Artificial Intelligence, Machine Learning and Deep Learning Applications" Electronics 12, no. 18: 3780. https://doi.org/10.3390/electronics12183780
APA StyleHaleem, M. S. (2023). Advances in Artificial Intelligence, Machine Learning and Deep Learning Applications. Electronics, 12(18), 3780. https://doi.org/10.3390/electronics12183780