Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement
Abstract
:1. Introduction
2. Two-Stage Feature-Based Modeling
2.1. Two-Stage Performance-Driven Modeling
2.2. Two-Level Modeling Using Feature-Based Surrogates
- Generation of random vectors xr(j) ∈ X until acquiring Nr samples whose objective vectors fr(j) belong to the assumed objective space F and assessment of supplementary performance vectors pr(j) for these samples;
- Rendition of the inverse surrogate sr with {xr(j), fr(j)}j = 1, …, Nr, serving as the training data;
- Surrogate model domain XS definition;
- Design of experiments (DoE): acquisition of {xB(k), R(xB(k))}k = 1, …, NB, (i.e., NB data samples are gathered);
- Retrieval of response feature: {FR (xB(k))}k = 1, …, NB, from the samples xB(k);
- Rendition of the ultimate surrogate model s as a kriging interpolation model using {xB(k), FR(xB(k))}k = 1, …, NB.
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cano, J.L.; Ceccato, G.; Fernandez, T.; Mediavilla, A.; Perregrini, L. An ultra-compact full-band waveguide quadrature hybrid coupler. IEEE Microw. Wirel. Comp. Lett. 2022, 32, 9–12. [Google Scholar] [CrossRef]
- Han, J.-H.; Ju, S.-H.; Kang, N.-W.; Lee, W.-S.; Choi, J.-S. Wideband coupling modeling analysis by arbitrarily incoming source fields based on the electromagnetic topology technique. IEEE Trans. Microw. Theory Tech. 2019, 67, 28–37. [Google Scholar] [CrossRef]
- Stanovov, V.V.; Khodenkov, S.A.; Popov, A.M.; Kazakovtsev, L.A. The automatic design of multimode resonator topology with evolutionary algorithms. Sensors 2022, 22, 1961. [Google Scholar] [CrossRef]
- Ghimire, J.; Diba, F.D.; Kim, J.-H.; Choi, D.-Y. Vivaldi antenna arrays feed by frequency-independent phase shifter for high directivity and gain used in microwave sensing and communication applications. Sensors 2021, 21, 6091. [Google Scholar] [CrossRef] [PubMed]
- Aghayari, H.; Nourinia, J.; Ghobadi, C.; Mohammadi, B. Realization of dielectric loaded waveguide filter with substrate integrated waveguide technique based on incorporation of two substrates with different relative permittivity. AEU—Int. J. Electr. Comm. 2018, 86, 17–24. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, B.; Yu, Z.; Zhou, J. Robust fast electromagnetic optimization of SIW filters using model-based deviation estimation and Jacobian matrix update. IEEE Access 2020, 8, 2708–2722. [Google Scholar] [CrossRef]
- Merenda, M.; Felini, C.; Della Corte, F.G. A monolithic multisensor microchip with complete on-chip RF front-end. Sensors 2018, 18, 110. [Google Scholar] [CrossRef]
- Bogdan, G.; Sobolewski, J.; Bajurko, P.; Yashchyshyn, Y.; Oklej, J.; Ostaszewski, D. A wire-bonded patch antenna for millimeter wave applications. Electronics 2023, 12, 632. [Google Scholar] [CrossRef]
- Slimi, M.; Jmai, B.; Dinis, H.; Gharsallah, A.; Mendes, P.M. Metamaterial Vivaldi antenna array for breast cancer detection. Sensors 2022, 22, 3945. [Google Scholar] [CrossRef]
- Przesmycki, R.; Bugaj, M. Crescent microstrip antenna for LTE-U and 5G systems. Electronics 2022, 11, 120. [Google Scholar] [CrossRef]
- Ahmad, S.; Ijaz, U.; Naseer, S.; Ghaffar, A.; Qasim, M.A.; Abrar, F.; Parchin, N.O.; See, C.H.; Abd-Alhameed, R. A jug-shaped CPW-fed ultra-wideband printed monopole antenna for wireless communications networks. Appl. Sci. 2022, 12, 821. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, Y.; Zhao, X.; Cao, Y.; Chang, C.-H. A 1036-F2/Bit high reliability temperature compensated cross-coupled comparator-based PUF. IEEE Trans. VLSI Syst. 2020, 28, 1449–1460. [Google Scholar] [CrossRef]
- Diman, A.A.; Karami, F.; Rezaei, P.; Amn-e-Elahi, A.; Mousavirazi, Z.; Denidni, C.-H.; Kishk, A.A. Efficient SIW-feed network suppressing mutual coupling of slot antenna array. IEEE Trans. Antennas Propag. 2021, 69, 6058–6063. [Google Scholar] [CrossRef]
- Zakharov, A.; Rozenko, S.; Ilchenko, M. Two types of trisection bandpass filters with mixed cross-coupling. IEEE Microw. Wirel. Comp. Lett. 2018, 28, 585–587. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Yuan, J. A Compact fourth-order tunable bandpass filter based on varactor-loaded step-impedance resonators. Electronics 2023, 12, 2539. [Google Scholar] [CrossRef]
- Kim, J.; Mauludin, M.F.; Azzahra, H.A.; Jhon, H.; Lee, S.; Cho, K. An 18–19.2 GHz voltage-controlled oscillator with a compact varactor-only capacitor array. Electronics 2023, 12, 1532. [Google Scholar] [CrossRef]
- Lian, W.X.; Yong, J.K.; Chong, G.; Churchill, K.K.P.; Ramiah, H.; Chen, Y.; Mak, P.-I.; Martins, R.P. A reconfigurable hybrid RF front-end rectifier for dynamic PCE enhancement of ambient RF energy harvesting systems. Electronics 2023, 12, 175. [Google Scholar] [CrossRef]
- Roshani, S.; Roshani, S. A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines. Wirel. Netw. 2021, 27, 677–684. [Google Scholar] [CrossRef]
- Socuéllamos, J.M.; Dionisio, R.; Letizia, R.; Paoloni, C. Experimental validation of phase velocity and interaction impedance of meander-line slow-wave structures for space traveling-wave tubes. IEEE Trans. Microw. Theory Tech. 2021, 69, 2148–2154. [Google Scholar] [CrossRef]
- Xiong, Y.; Tang, X.; Ma, J.; Yu, L. Miniaturized metamaterial-inspired travelling wave tube for S band. Electronics 2023, 12, 3062. [Google Scholar] [CrossRef]
- Karpuz, C.; Cakir, M.; Gorur, A.K.; Gorur, A. Design of N-way Wilkinson power dividers with new Input/Output arrangements for power-halving operations. Appl. Sci. 2023, 13, 6852. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, W.-S.; Wang, D.-W.; Liu, J. Compact folded SSPP transmission line and its applications in low-pass filters. IEEE Photonics Tech. Lett. 2022, 34, 591–594. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, W.; Li, J.; Zhao, M.; Wei, F. A balanced BPF with wide bandwidth and steep selectivity based on slotline stub loaded resonators (SSLRs). Electronics 2023, 12, 3389. [Google Scholar] [CrossRef]
- Zeng, Z.; Yao, Y.; Zhuang, Y. A wideband common-mode suppression filter with compact-defected ground structure pattern. IEEE Trans. Electromagn. Compat. 2015, 57, 1277–1280. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, Y.; Liang, C.; Majid, I. Design of UWB filtering impedance transformers and power dividers using stepped-impedance resonators. Electronics 2023, 12, 2800. [Google Scholar] [CrossRef]
- Wu, H.-W.; Chiu, C.-T. Design of compact multi-layered quad-band bandpass filter. IEEE Microw. Wirel. Comp. Lett. 2016, 26, 879–881. [Google Scholar] [CrossRef]
- Gao, M.; Zhao, X. Design of tri-band patch antenna with enhanced bandwidth and diversity pattern for indoor wireless communication. Appl. Sci. 2022, 12, 7445. [Google Scholar] [CrossRef]
- Chen, L.; Qin, M.; Zou, L.; Zhang, T. A low-RCS 2D multi-layer Van Atta array at X-band. Electronics 2023, 12, 3486. [Google Scholar] [CrossRef]
- Ilyas, S.; Shoaib, N.; Nikolaou, S.; Cheema, H.M. A wideband tunable power divider for SWIPT systems. IEEE Access 2020, 8, 30675–30681. [Google Scholar] [CrossRef]
- Wang, Z.; Lang, T.; Qiu, Y. Wideband airy beam generation using reflective metasurfaces with both phase and amplitude modulation. Photonics 2023, 10, 426. [Google Scholar] [CrossRef]
- Fu, C.; Fang, W.; Fan, R.; Wang, L.; Huang, W.; Zhang, Y.; Liu, C. Design and implementation of low parasitic inductance bias circuit for high-power pulsed power amplifiers. Electronics 2023, 12, 1430. [Google Scholar] [CrossRef]
- Iqbal, A.; Tiang, J.J.; Wong, S.K.; Wong, S.W.; Mallat, N.K. QMSIW-based single and triple band bandpass filters. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2443–2447. [Google Scholar] [CrossRef]
- Li, F.; You, B. Complementary multi-band dual polarization conversion metasurface and its RCS reduction application. Electronics 2022, 11, 1645. [Google Scholar] [CrossRef]
- Basit, A.; Daraz, A.; Khan, M.I.; Zubir, F.; A. AlQahtan, S.; Zhang, G. Design and modelling of a compact triband passband filter for GPS, WiMAX, and satellite applications with multiple transmission zero’s. Fractal Fract. 2023, 7, 511. [Google Scholar] [CrossRef]
- Roshani, S.; Roshani, S. Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications. Wirel. Netw. 2020, 26, 1493–1501. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, H.; Wang, J.; Zhu, Y.; Pan, C.; Wu, X. Circular polarization annular leaky-wave antenna with conical and broadside beams. Electronics 2023, 12, 2761. [Google Scholar] [CrossRef]
- Bizan, M.S.; Naseri, H.; Pourmohammadi, P.; Melouki, N.; Iqbal, A.; Denidni, T.A. Dual-band dielectric resonator antenna with filtering features for microwave and mm-wave applications. Micromachines 2023, 14, 1236. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.A.; Bakr, M.H.; Nikolova, N.K. Accelerated gradient-based optimization of planar circuits. IEEE Trans. Antennas Propag. 2005, 53, 880–883. [Google Scholar] [CrossRef]
- Rajagopalan, H.; Kovitz, J.M.; Rahmat-Samii, Y. MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio. IEEE Trans. Ant. Propag. 2014, 62, 1056–1064. [Google Scholar] [CrossRef]
- Chen, Z.; Cui, H.; Wu, E.; Yu, X. Computation and communication efficient adaptive federated optimization of federated learning for Internet of Things. Electronics 2023, 12, 3451. [Google Scholar] [CrossRef]
- Torun, H.M.; Swaminathan, M. High-dimensional global optimization method for high-frequency electronic design. IEEE Trans. Microw. Theory Tech. 2019, 67, 2128–2142. [Google Scholar] [CrossRef]
- Shao, K.; Fu, H.; Wang, B. An efficient combination of genetic algorithm and particle swarm optimization for scheduling data-intensive tasks in heterogeneous cloud computing. Electronics 2023, 12, 3450. [Google Scholar] [CrossRef]
- Yu, L.; Ren, J.; Zhang, J. A Quantum-based beetle swarm optimization algorithm for numerical optimization. Appl. Sci. 2023, 13, 3179. [Google Scholar] [CrossRef]
- Premkumar, M.; Jangir, P.; Sowmya, R. MOGBO: A new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems. Knowl.-Based Syst. 2021, 218, 106856. [Google Scholar] [CrossRef]
- Güneş, F.; Uluslu, A.; Mahouti, P. Pareto optimal characterization of a microwave transistor. IEEE Access 2020, 8, 47900–47913. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, J.; Hu, Z.; He, J.; Tang, D. Multi-objective antenna design based on BP neural network surrogate model optimized by improved sparrow search algorithm. Appl. Sci. 2022, 12, 12543. [Google Scholar] [CrossRef]
- Hong, T.; Zheng, S.; Liu, R.; Zhao, W. Design of mmWave directional antenna for enhanced 5G broadcasting coverage. Sensors 2021, 21, 746. [Google Scholar] [CrossRef]
- Zhao, Q.; Sarris, C.D. Space–time adaptive modeling and shape optimization of microwave structures with applications to metasurface design. IEEE Trans. Microw. Theory Tech. 2022, 70, 5440–5453. [Google Scholar] [CrossRef]
- Istenes, G.; Pusztai, Z.; Kőrös, P.; Horváth, Z.; Friedler, F. Kriging-assisted multi-objective optimization framework for electric motors using predetermined driving strategy. Energies 2023, 16, 4713. [Google Scholar] [CrossRef]
- Chen, M.; Gao, X.; Chen, C.; Guo, T.; Xu, W. A comparative study of meta-modeling for response estimation of stochastic nonlinear MDOF systems using MIMO-NARX models. Appl. Sci. 2022, 12, 11553. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, Q.S.; Chen, H.; Jiang, F. An efficient hybrid sampling method for neural network-based microwave component modeling and optimization. IEEE Microw. Wirel. Comp. Lett. 2020, 30, 625–628. [Google Scholar] [CrossRef]
- Katkevičius, A.; Plonis, D.; Damaševičius, R.; Maskeliūnas, R. Trends of microwave devices design based on Artificial Neural Networks: A review. Electronics 2022, 11, 2360. [Google Scholar] [CrossRef]
- Jamshidi, M.; Lalbakhsh, A.; Mohamadzade, B.; Siahkamari, H.; Hadi Mousavi, S.M. A novel neural-based approach for design of microstrip filters. AEU—Int. J. Electron. Comm. 2019, 110, 152847. [Google Scholar] [CrossRef]
- Jamshidi, M.; Yahya, S.I.; Roshani, S.; Chaudhary, M.A.; Ghadi, Y.Y.; Roshani, S. A fast surrogate model-based algorithm using multilayer perceptron neural networks for microwave circuit design. Algorithms 2023, 16, 324. [Google Scholar] [CrossRef]
- Plonis, D.; Katkevičius, A.; Krukonis, A.; Šlegerytė, V.; Maskeliūnas, R.; Damaševičius, R. Predicting the frequency characteristics of hybrid meander systems using a feed-forward backpropagation network. Electronics 2019, 8, 85. [Google Scholar] [CrossRef]
- Znou, Q.; Wang, Y.; Jiang, P.; Shao, X.; Choi, S.-K.; Hu, J.; Cao, L.; Meng, X. An active learning radial basis function modeling method based on self-organization maps for simulation-based design problems. Knowl.-Based Syst. 2017, 131, 10–27. [Google Scholar]
- Yang, P.; Wang, T.; Yang, H.; Meng, C.; Zhang, H.; Cheng, L. The performance of electronic current transformer fault diagnosis model: Using an improved whale optimization algorithm and RBF neural network. Electronics 2023, 12, 1066. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Y.; Qiang, Z.; Xu, L. Optimisation of reflection coefficient of microstrip antennas based on KBNN exploiting GPR model. IET Microw. Antennas Propag. 2018, 12, 602–606. [Google Scholar] [CrossRef]
- Ni, W.; Zhang, Y.; Li, X.; Wang, X.; Wu, Y.; Liu, G. A study on the relationship between RPE and sEMG in dynamic contraction based on the GPR method. Electronics 2022, 11, 691. [Google Scholar] [CrossRef]
- Yu, M.; Liang, J.; Wu, Z.; Yang, Z. A twofold infill criterion-driven heterogeneous ensemble surrogate-assisted evolutionary algorithm for computationally expensive problems. Knowl.-Based Syst. 2022, 236, 107747. [Google Scholar] [CrossRef]
- Wei, Y.; Qi, G.; Wang, Y.; Yan, N.; Zhang, Y.; Feng, L. Efficient microwave filter design by a surrogate-model-assisted decomposition-based multi-objective evolutionary algorithm. Electronics 2022, 11, 3309. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.G.; Song, B.; Wang, P.; Wang, Y. A novel evolutionary sampling assisted optimization method for high dimensional expensive problems. IEEE Tran. Evol. Comp. 2019, 23, 815–827. [Google Scholar] [CrossRef]
- Forrester, A.I.J.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [Google Scholar] [CrossRef]
- Siddiqui, M.U.A.; Qamar, F.; Kazmi, S.H.A.; Hassan, R.; Arfeen, A.; Nguyen, Q.N. A study on multi-antenna and pertinent technologies with AI/ML approaches for B5G/6G networks. Electronics 2023, 12, 189. [Google Scholar] [CrossRef]
- Lahiani, M.A.; Raida, Z.; Veselý, J.; Olivová, J. Pre-design of multi-band planar antennas by artificial neural networks. Electronics 2023, 12, 1345. [Google Scholar] [CrossRef]
- Siddiqui, S.; Azarm, S.; Gabriel, S. A modified Benders decomposition method for efficient robust optimization under interval uncertainty. Struct. Multidiscip. Optim. 2011, 44, 259–275. [Google Scholar] [CrossRef]
- Garbaya, A.; Kotti, M.; Fakhfakh, M.; Tlelo-Cuautle, E. Metamodelling techniques for the optimal design of low-noise amplifiers. Electronics 2020, 9, 787. [Google Scholar] [CrossRef]
- Tan, X.; Sun, J.; Lin, F. A compact frequency-reconfigurable rat-race coupler. IEEE Microw. Wirel. Comp. Lett. 2020, 30, 665–668. [Google Scholar] [CrossRef]
- Choi, J.-S.; Min, B.-C.; Kim, M.-J.; Kumar, S.; Choi, H.-C.; Kim, K.-W. Design of a common-mode rejection filter using dumbbell-shaped defected ground structures based on equivalent circuit models. Electronics 2023, 12, 3230. [Google Scholar] [CrossRef]
- Koziel, S.; Bandler, J.W.; Cheng, Q.S. Reduced-cost microwave component modeling using space-mapping-enhanced EM-based kriging surrogates. Int. J. Numer. Model. 2013, 26, 275–286. [Google Scholar] [CrossRef]
- Feng, F.; Zhang, J.; Zhang, W.; Zhao, Z.; Jin, J.; Zhang, Q. Coarse- and fine-mesh space mapping for EM optimization incorporating mesh deformation. IEEE Microw. Wirel. Comp. Lett. 2019, 29, 510–512. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Liu, L.; Yan, S.; Wang, W.; Jiao, W.; Xu, M.; Hu, W. Multi-objective optimization design of a radial-tangential built-in combined permanent magnet pole generator for electric vehicles. Electronics 2023, 12, 2911. [Google Scholar] [CrossRef]
- Yan, S.; Qian, F.; Li, C.; Wang, J.; Wang, X.; Liu, W. Improved empirical formula modeling method using neuro-space mapping for coupled microstrip lines. Micromachines 2023, 14, 1600. [Google Scholar] [CrossRef]
- Salarkaleji, M.; Eskandari, M.; Chen, J.C.-M.; Wu, C.-T.M. Frequency and polarization-diversified linear sampling methods for microwave tomography and remote sensing using electromagnetic metamaterials. Electronics 2017, 6, 85. [Google Scholar] [CrossRef]
- Pérez, R.; Pelletier, A.; Grenier, J.-M.; Cros, J.; Rancourt, D.; Freer, R. Comparison between space mapping and direct FEA optimizations for the design of Halbach array PM motor. Energies 2022, 15, 3969. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Yan, S.; Wang, J. Analytical separated neuro-space mapping modeling method of power transistor. Micromachines 2023, 14, 426. [Google Scholar] [CrossRef]
- Sans, M.; Selga, J.; Velez, P.; Rodriguez, A.; Bonache, J.; Boria, V.; Mrtin, F. Automated design of common-mode suppressed balanced wideband bandpass filters by means of aggressive space mapping. IEEE Trans. Microw. Theory Tech. 2015, 63, 3896–3908. [Google Scholar] [CrossRef]
- Gu, P.; Cao, Z.; He, Z.; Ding, D. Design of ultrawideband RCS reduction metasurface using space mapping and phase cancellation. IEEE Microw. Antennas Propag. Lett. 2023, 22, 1386–1390. [Google Scholar] [CrossRef]
- Xiangjun, X.; Dagang, F.; Yan, D. Frequency space-mapped neuromodeling technique exploiting S-B AFS for the design of microwave circuits. In Proceedings of the Asia-Pacific Microwave Conference, Suzhou, China, 4–7 December 2005; p. 3. [Google Scholar]
- Koziel, S.; Sigurðsson, A.T. Triangulation-based constrained surrogate modeling of antennas. IEEE Trans. Antennas Propag. 2018, 66, 4170–4179. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Performance-based nested surrogate modeling of antenna input characteristics. IEEE Trans. Antennas Propag. 2019, 67, 2904–2912. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A.; Ullah, U. Low-cost modeling of microwave components by means of two-stage inverse/forward surrogates and domain confinement. IEEE Trans. Microw. Theory Tech. 2021, 69, 5189–5202. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments. Eng. Comput. 2019, 36, 2293–2308. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Surrogate modeling of impedance matching transformers by means of variable-fidelity electromagnetic simulations and nested cokriging. Int. J. RF Microw. CAE 2020, 30, e22268. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction. IET Microw. Antennas Propag. 2020, 14, 1643–1650. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging. AEU—Int. J. Electron. Comm. 2020, 126, 153419. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Nested kriging with variable domain thickness for rapid surrogate modeling and design optimization of antennas. Electronics 2020, 9, 1621. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Dimensionality-reduced antenna modeling with stochastically established constrained domain. Knowl.-Based Syst. 2023, 271, 110557. [Google Scholar] [CrossRef]
- Koziel, S.; Çalık, N.; Mahouti, P.; Belen, M.A. Reliable computationally efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains. IEEE Trans. Microw. Theory Tech. 2023, 71, 956–968. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Expedited variable-resolution surrogate modeling of miniaturized microwave passives in confined domains. IEEE Trans. Microw. Theory Tech. 2022, 70, 4740–4750. [Google Scholar] [CrossRef]
- Koziel, S. Fast simulation-driven antenna design using response-feature surrogates. Int. J. RF Microw. CAE 2015, 25, 394–402. [Google Scholar] [CrossRef]
- Mahouti, P. Application of artificial intelligence algorithms on modeling of reflection phase characteristics of a nonuniform reflectarray element. Int. J. Numer. Model. 2020, 33, e2689. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X. Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids. N. J. Chem. 2020, 44, 20544–20567. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Fast design closure of compact microwave components by means of feature-based metamodels. Electronics 2021, 10, 10. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Rapid design centering of multi-band antennas using knowledge-based inverse models and response features. Knowl.-Based Syst. 2022, 252, 109360. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Generalized formulation of response features for reliable optimization of antenna input characteristics. IEEE Trans. Antennas Propag. 2021, 70, 3733–3748. [Google Scholar] [CrossRef]
- Koziel, S.; Sigurðsson, A.T. Performance-driven modeling of compact couplers in restricted domains. Int. J. RF Microw. CAE 2018, 28, e21296. [Google Scholar] [CrossRef]
- Tseng, C.; Chang, C. A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEEE Trans. Microw. Theory Tech. 2012, 60, 2085–2092. [Google Scholar] [CrossRef]
- Lin, Z.; Chu, Q.-X. A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines. Prog. Electromagn. Res. 2010, 103, 271–284. [Google Scholar] [CrossRef]
- Mengozzi, M.; Angelotti, A.M.; Gibiino, G.P.; Florian, C.; Santarelli, C. Joint dual-input digital predistortion of supply-modulated RF PA by surrogate-based multi-objective optimization. IEEE Trans. Microw. Tech. 2022, 70, 35–49. [Google Scholar] [CrossRef]
Description | Notation |
---|---|
Vector of geometry parameters | x = [x1 … xn]T |
Conventional design space | X = [l, u] |
Lower bounds on parameters | l = [l1 …, ln]T |
Upper bounds on parameters | u = [u1 …, un]T |
Performance figures | fk, k = 1, …, N |
Space of design objectives | F: fk.min ≤ fk(j) ≤ fk.max, k = 1, …, N |
Vector of objectives | F = [f1 … fN]T |
Parameter | Circuit Structure | ||
---|---|---|---|
Circuit I [97] | Circuit II [98] | Circuit III [99] | |
Substrate | RO4003 (εr = 3.38, h = 0.76 mm) | εr—operating parameter h = 0.76 mm | AD250 (εr = 2.5, h = 0.81 mm) |
Design parameters $ | x = [l1 l2 l3 d w w1]T | x = [g l1r la lb w1 w2r w3r w4r wa wb]T | x = [l1 l2 l3 l4 l5 s w2] |
Other parameters $ | d1 = d + |w − w1|, d = 1.0, w0 = 1.7, and l0 = 15 | L = 2dL + Ls, Ls = 4w1 + 4g + s + la + lb, W = 2dL + Ws, Ws = 4w1 + 4g + s + 2wa, l1 = lbl1r, w2 = waw2r, w3 = w3rwa, w4 = w4rwa | w1 = 2.2 mm, g = 1 mm |
Conventional parameter space X | l = [2.0 7.0 12.5 0.2 0.7 0.2]T, u = [4.5 12.5 22.0 0.65 1.5 0.9]T | l = [0.4 0.43 5.9 7.7 0.68 0.28 0.1 0.1 2.0 0.2]T, u = [1.0 0.86 14.0 16.5 1.5 0.99 0.65 0.25 5.5 0.8]T | l = [14.5 1.1 13.0 0.5 1.6 0.19 3.9]T, u = [37.0 16.6 35.0 15.0 5.6 1.5 5.8]T |
Figures of interest |
|
|
|
Design objectives |
|
|
|
Objective space | 1.0 GHz ≤ f0 ≤ 2.0 GHz −6.0 dB ≤ K ≤ 0 dB | 1.0 GHz ≤ f0 ≤ 2.0 GHz 2.0 ≤ εr ≤ 5.0 | 1.25 GHz ≤ f1 ≤ 4.0 GHz 1.4 ≤ Kf ≤ 1.8 |
Modeling Technique | Domain | Comments |
---|---|---|
Kriging interpolation | Conventional (parameter space X) | Gaussian correlation function with the trend function being a second-order polynomial |
Radial basis functions (RBF) | Conventional (parameter space X) | Gaussian correlation function: cross-validation used to determine a scaling coefficient |
Artificial neural networks (ANN) | Conventional (parameter space X) | Feedforward network with two hidden layers, model training using backpropagation |
Convolutional neural networks (CNN) | Conventional (parameter space X) | Model with four filters with the filter sizes of (64 128 256 512) trained with the ADAM algorithm, miniBatchSize = 1000, activation function: reluLayer, loss function: MAE, Maximum number of epochs = 900, gradient decay factor = 0.8, initial learning rate = 1 × 10−2, learning rate drop factor = 0.5, learning rate drop period = 50. |
Ensemble learning | Conventional (parameter space X) | Least-squares boosting with 500 learning cycles, learning rate optimized through Bayesian optimization, number of learning cycles = 500, number of bins = 100, learning rate = 0.01. |
Nested kriging [81] | Confined domain XS | Circuit I: 12 reference designs, acquisition cost 779 EM analyses Circuit II: 9 reference designs, acquisition cost 1014 EM analyses Circuit III: 9 designs, acquisition cost 923 EM analyses |
Reference-design-free modeling [82] | Confined domain XS | Circuit I: 100 accepted observables, acquisition cost 116 EM analyses Circuit II: 100 accepted observables, acquisition cost 226 EM analyses Circuit III: 50 accepted observables, acquisition cost 78 EM analyses |
Modeling Method | Number of Training Samples | |||||||
---|---|---|---|---|---|---|---|---|
20 | 50 | 100 | 200 | 400 | 800 | |||
Kriging | Modeling error & | 34.7% | 25.7% | 17.9% | 13.5% | 9.9% | 8.0% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
RBF | Modeling error & | 42.1% | 28.3% | 19.1% | 13.9% | 10.3% | 8.9% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
ANN | Modeling error & | 34.9% | 18.2% | 12.2% | 8.0% | 7.8% | 6.5% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
CNN | Modeling error & | 35.8% | 22.9% | 12.7% | 8.0% | 5.5% | 4.5% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
Ensemble learning | Modeling error & | 38.8% | 32.7% | 28.1% | 25.0% | 22.8% | 19.1% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
Nested kriging [81] | Modeling error & | 17.7% | 6.9% | 5.7% | 3.8% | 3.5% | 3.1% | |
Cost $ | 799 | 829 | 879 | 979 | 1179 | 1579 | ||
No-reference-design modeling [82] | Modeling error & | 6.1% | 4.8% | 4.2% | 3.3% | 3.2% | 2.6% | |
Cost # | 136 | 166 | 216 | 316 | 516 | 916 | ||
Feature-based no-reference-design modeling (this work) | Modeling error * | f0 | 2.38% | 1.34% | 1.09% | 0.87% | 0.66% | 0.55% |
S21(f0) | 1.11% | 0.77% | 0.68% | 0.60% | 0.55% | 0.38% | ||
S31(f0) | 1.70% | 1.46% | 1.14% | 0.99% | 1.02% | 0.72% | ||
Cost # | 136 | 166 | 216 | 316 | 516 | 916 |
Modeling Method | Number of Training Samples | |||||||
---|---|---|---|---|---|---|---|---|
20 | 50 | 100 | 200 | 400 | 800 | |||
Kriging | Modeling error & | 66.8% | 52.3% | 38.3% | 31.0% | 27.3% | 23.3% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
RBF | Modeling error & | 64.2% | 51.8% | 40.5% | 37.4% | 32.8% | 27.2% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
ANN | Modeling error & | 51.4% | 29.9% | 22.2% | 15.2% | 10.5% | 9.8% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
CNN | Modeling error & | 70.6% | 51.9% | 39.9% | 30.7% | 19.7% | 11.5% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
Ensemble learning | Modeling error & | 72.1% | 53.1% | 44.4% | 41.6% | 38.7% | 33.3% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
Nested kriging [81] | Modeling error & | 16.8% | 10.0% | 7.4% | 6.8% | 5.1% | 4.8% | |
Cost $ | 1034 | 1064 | 1114 | 1214 | 1414 | 1814 | ||
No-reference-design modeling [82] | Modeling error & | 12.8% | 7.6% | 6.2% | 4.7% | 4.5% | 3.4% | |
Cost # | 246 | 276 | 326 | 426 | 626 | 1026 | ||
Feature-based no-reference-design modeling (this work) | Modeling error * | f0 | 3.66% | 1.07% | 1.00% | 0.57% | 0.50% | 0.42% |
S21(f0) | 0.92% | 0.84% | 0.70% | 0.66% | 0.55% | 0.51% | ||
S31(f0) | 1.39% | 0.96% | 0.77% | 0.70% | 0.65% | 0.61% | ||
Cost # | 246 | 276 | 326 | 426 | 626 | 1026 |
Modeling Method | Number of Training Samples | |||||||
---|---|---|---|---|---|---|---|---|
20 | 50 | 100 | 200 | 400 | 800 | |||
Kriging | Modeling error & | 77.0% | 63.6% | 53.8% | 45.2% | 40.0% | 35.1% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
RBF | Modeling error & | 79.2% | 68.9% | 55.2% | 43.9% | 40.8% | 37.2% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
ANN | Modeling error & | 44.1% | 36.7% | 33.2% | 24.6% | 20.8% | 20.3% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
CNN | Modeling error & | 102.8% | 89.6% | 44.7% | 26.0% | 17.8% | 15.8% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
Ensemble learning | Modeling error & | 63.5% | 47.8% | 40.6% | 38.1% | 36.2% | 33.6% | |
Cost | 20 | 50 | 100 | 200 | 400 | 800 | ||
Nested kriging [81] | Modeling error & | 41.6% | 32.3% | 19.2% | 18.1% | 15.2% | 12.9% | |
Cost $ | 943 | 973 | 1023 | 1123 | 1323 | 1723 | ||
No-reference-design modeling [82] | Modeling error & | 63.8% | 23.7% | 15.7% | 10.8% | 7.2% | 6.1% | |
Cost # | 98 | 128 | 178 | 278 | 478 | 878 | ||
Feature-based no-reference-design modeling (this work) | Modeling error * | f1 | 2.38% | 0.78% | 0.49% | 0.30% | 0.35% | 0.27% |
f2 | 2.00% | 0.63% | 0.29% | 0.23% | 0.18% | 0.17% | ||
Cost # | 98 | 128 | 178 | 278 | 478 | 878 |
Verification Structure | Modeling Error | Number of Training Samples | |||||
---|---|---|---|---|---|---|---|
20 | 50 | 100 | 200 | 400 | 800 | ||
Circuit I | f0 [GHz] | 0.031 | 0.019 | 0.016 | 0.011 | 0.010 | 0.008 |
K [dB] | 0.235 | 0.198 | 0.155 | 0.139 | 0.131 | 0.095 | |
Circuit II | f0 [GHz] | 0.046 | 0.015 | 0.014 | 0.008 | 0.007 | 0.006 |
K [dB] | 0.187 | 0.149 | 0.128 | 0.120 | 0.103 | 0.095 | |
Circuit III | f1 [GHz] | 0.039 | 0.015 | 0.010 | 0.008 | 0.007 | 0.005 |
f2 [GHz] | 0.054 | 0.018 | 0.009 | 0.008 | 0.006 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrenko-Dabrowska, A.; Koziel, S.; Zhang, Q.-J. Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement. Electronics 2023, 12, 3560. https://doi.org/10.3390/electronics12173560
Pietrenko-Dabrowska A, Koziel S, Zhang Q-J. Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement. Electronics. 2023; 12(17):3560. https://doi.org/10.3390/electronics12173560
Chicago/Turabian StylePietrenko-Dabrowska, Anna, Slawomir Koziel, and Qi-Jun Zhang. 2023. "Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement" Electronics 12, no. 17: 3560. https://doi.org/10.3390/electronics12173560
APA StylePietrenko-Dabrowska, A., Koziel, S., & Zhang, Q.-J. (2023). Cost-Efficient Two-Level Modeling of Microwave Passives Using Feature-Based Surrogates and Domain Confinement. Electronics, 12(17), 3560. https://doi.org/10.3390/electronics12173560