A Reactive Power Injection Algorithm for Improving the Microgrid Operational Reliability
Abstract
:1. Introduction
- (1)
- This paper presents a reliability enhancement strategy that utilizes apparent power reconstruction to optimize the shape of the power curve and make efficient use of the converter’s remaining capacity. By reducing power fluctuations and mitigating junction temperature fluctuations in power devices, the proposed method extends their lifetime and improves the operational reliability of the microgrid. The strategy achieves power curve reconstruction by controlling reactive power injection within the PQ loop, offering the advantages of easy integration and simple control.
- (2)
- In this paper, we propose a reactive power injection algorithm for mitigating power fluctuations. The algorithm involves establishing the extraction of the enveloped power curve and calculating the amount of reactive power injection in real-time based on the power triangle.
2. Overview of Algorithm and Verification
2.1. PQ Control Strategy
2.2. The Restructuring Process of the Output Power Curve
2.3. Reliability Evaluation of IGBT Modules
3. Envelope Detection and Reactive Power Injection Algorithm
3.1. Principle of Apparent Power Envelope Detection
3.2. Principle of Reactive Power Injection Algorithm
4. Reliability Evaluation of IGBT Modules
4.1. Analysis of Electro-Thermal Coupling Model
4.1.1. Power Loss
4.1.2. Switching Loss
4.1.3. Thermal Model
4.2. Analysis of Lifetime Evaluation of the IGBT Module
4.2.1. Rainflow Counting Method
4.2.2. Lesit Model
5. Simulation Results and Analysis
5.1. Scenario 1
5.2. Scenario 2
6. Conclusions
- (1)
- The utilization of reactive power injection effectively mitigates the power fluctuations in the converter, thereby enhancing the reliability of microgrid operation to a certain extent. However, it does affect the power distribution from the converter to the system. Hence, it becomes necessary to implement further coordinated management of the converters corresponding to different micro sources within the system, which aims to ensure the power delivery requirement and enhance the operational reliability of the microgrid system.
- (2)
- The proposed reactive power injection algorithm mitigates junction temperature fluctuations while increasing the average junction temperature concurrently, which presents a challenge to the reliability of power devices. Therefore, further theoretical research is needed to investigate the effect of power fluctuation on the reliability of power devices, eventually achieving an accurate calculation of reactive power injection amount based on the power fluctuation for the purpose of improving power devices’ reliability.
- (3)
- The verification procedure solely consists of simulations; therefore, it is crucial to construct an experimental platform to further validate the feasibility of the proposed algorithm.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IGBTs | Insulated gate bipolar transistors |
FWD | Freewheeling diode |
DSVPWM | Discontinuous space vector pulse width modulation |
DPWM | Discontinuous pulse width modulation |
CPWM | Continuous pulse width modulation |
EMI | Electromagnetic interference |
PNR | Power network reconfiguration |
SNS | Social network search |
MJFS | Modified jellyfish search |
ONR | Optimal network reconfiguration |
MG | Microgrid |
EO | Equilibrium optimization |
CTE | Coefficients of thermal expansion |
References
- Guo, L.; Wang, W.; Liu, W.; Jiao, B.; Wang, C.; Liu, Y.; Wang, S. The Energy Management Method for Stand-Alone Wind/Diesel/Battery/Sea-Water Desalination Microgrid. Trans. China. Electrotech. Soc. 2014, 29, 113–121. [Google Scholar]
- Barzkar, A.; Ghassemi, M. Electric Power Systems in More and All Electric Aircraft: A Review. IEEE Access 2020, 8, 169314–169332. [Google Scholar] [CrossRef]
- Sulligoi, G.; Vicenzutti, A.; Menis, R. All-Electric Ship Design: From Electrical Propulsion to Integrated Electrical and Electronic Power Systems. IEEE Trans. Transp. Electrif. 2016, 2, 507–521. [Google Scholar] [CrossRef]
- Zheng, S.; Du, X.; Zhang, J.; Yu, Y.; Sun, P. Measurement of Thermal Parameters of SiC MOSFET Module by Case Temperature. IEEE. J. EM. Sel. Top. P. 2020, 8, 311–322. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, L.; Du, X.; Sun, P.; Mao, Y. Effects of Different Parameters on Reliability of Grid-side Converters Based on Varied Junction Temperature of Devices in Wind Turbines. Proc. Chin. Soc. Electr. Eng. 2013, 33, 41–49+8. [Google Scholar]
- Wang, H.; Liserre, M.; Blaabjerg, F.; Jacobsen, J.B.; Kvisgaard, T.; Landkildehus, J. Transitioning to Physics-of-Failure as a Reliability Driver in Power Electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 97–114. [Google Scholar] [CrossRef]
- Ma, K.; Liserre, M.; Blaabjerg, F.; Kerekes, T. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter. IEEE Trans. Power Electron. 2015, 30, 590–602. [Google Scholar] [CrossRef]
- Rodriguez, C.; Amaratunga, G.A.J. Long-Lifetime Power Inverter for Photovoltaic AC Modules. IEEE Trans. Ind. Electron. 2008, 55, 2593–2601. [Google Scholar] [CrossRef]
- Chan, F.; Calleja, H. Reliability Estimation of Three Single-Phase Topologies in Grid-Connected PV Systems. IEEE Trans. Ind. Electron. 2011, 58, 2683–2689. [Google Scholar] [CrossRef]
- Harb, S.; Balog, R.S. Reliability of Candidate Photovoltaic Module-Integrated-Inverter (PV-MII) Topologies—A Usage Model Approach. IEEE Trans. Power Electron. 2013, 28, 3019–3027. [Google Scholar] [CrossRef]
- Mukherjee, N.; Strickland, D. Second Life Battery Energy Storage Systems: Converter topology and redundancy selection. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 8–10 April 2014; pp. 1–6. [Google Scholar]
- Ma, K.; Wang, H.; Blaabjerg, F. New Approaches to Reliability Assessment: Using physics-of-failure for prediction and design in power electronics systems. IEEE Power Electron. Mag. 2016, 3, 28–41. [Google Scholar] [CrossRef]
- Flack, J.; Andresen, M.; Liserre, M. Active Thermal Control of IGBT Power Electronic Converters. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 1–6. [Google Scholar]
- Huang, S.; Chen, Y.; Liu, P.; Rong, F. Band-Oriented Active Thermal Management Control of PWM Inverter. Electr. Power. Autom. Equip. 2017, 37, 34–39. [Google Scholar]
- Hu, R.; Chen, Q.; Hu, C. Study on Thermal Reliability of Three-Level Inverter Based on Dynamic DSVPWM. Power Electron. 2019, 53, 87–89+107. [Google Scholar]
- Du, X.; Li, G.; Li, T.; Sun, P.; Zhou, L. A Hybrid Modulation Method for Improving the Lifetime of Power Modules in the Wind Power Converter. Proc. Chin. Soc. Electr. Eng. 2015, 35, 5003–5012. [Google Scholar]
- Sathik, M.H.M.; Prasanth, S.; Sasongko, F.; Padmanabhan, S.K.; Pou, J.; Simanjorang, R. A Dynamic Thermal Controller for Power Semiconductor Devices. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2792–2797. [Google Scholar]
- Wang, B.; Zhou, L.; Zhang, Y.; Wang, K.; Du, X.; Sun, P. Active Junction Temperature Control of IGBT Based on Adjusting the Turn-off Trajectory. IEEE Trans. Power Electron. 2018, 33, 5811–5823. [Google Scholar] [CrossRef]
- Liserre, M.; Andresen, M.; Costa, L.; Buticchi, G. Power Routing in Modular Smart Transformers: Active Thermal Control Through Uneven Loading of Cells. IEEE Ind. Electron. Mag. 2016, 10, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Buticchi, G.; Andresen, M.; Wutti, M.; Liserre, M. Lifetime-Based Power Routing of a Quadruple Active Bridge DC/DC Converter. IEEE Trans. Power Electron. 2017, 32, 8892–8903. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, A.; El-Sehiemy, R.; Kamel, S.; Selim, A. Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm. Energies 2022, 15, 6994. [Google Scholar] [CrossRef]
- Shaheen, A.; El-Sehiemy, R.; Kamel, S.; Selim, A. Reliability Improvement Based Reconfiguration of Distribution Networks via Social Network Search Algorithm. In Proceedings of the 2022 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 13–15 December 2022; pp. 1–6. [Google Scholar]
- Shaheen, A.; El-Seheimy, R.; Kamel, S.; Selim, A. Reliability enhancement and power loss reduction in medium voltage distribution feeders using modified jellyfish optimization. Alex. Eng. J. 2023, 75, 363–381. [Google Scholar] [CrossRef]
- Abou El-Ela, A.A.; El-Sehiemy, R.A.; Allam, S.M.; Shaheen, A.M.; Nagem, N.A.; Sharaf, A.M. Renewable Energy Micro-Grid Interfacing: Economic and Environmental Issues. Electronics 2022, 11, 815. [Google Scholar] [CrossRef]
- Ma, K.; Liserre, M.; Blaabjerg, F. Reactive Power Influence on the Thermal Cycling of Multi-MW Wind Power Inverter. IEEE Trans. Ind. Appl. 2013, 49, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Wan, S. Thermal Behavior Optimal Control for Wind Power Converter with Reactive Power Circulation. Electric Drive 2017, 47, 68–74. [Google Scholar]
- Jauhari, M.; Riawan, D.C.; Ashari, M. Control Design for Shunt Active Power Filter Based on PQ Theory in Photovoltaic Grid-Connected System. Int. J. Power Electron. Drive Syst. 2018, 9, 1064–1071. [Google Scholar]
- Haider, S.; Li, G.; Wang, K. A dual control strategy for power sharing improvement in islanded mode of AC microgrid. Prot Control Mod Power Syst. 2018, 3, 10. [Google Scholar] [CrossRef]
- An, T.; Zhou, R.; Qin, F.; Dai, Y.; Gong, Y.; Chen, P. Comparative Study of the Parameter Acquisition Methods for the Cauer Thermal Network Model of an IGBT Module. Electronics 2023, 12, 1650. [Google Scholar] [CrossRef]
- Sun, P.; Wang, H.; Gong, C.; Du, X.; Luo, Q.; Wang, Z. Mechanism Research of Short-circuit Current as Bond Wire Ageing Indicator of Insulated Gate Bipolar Transistor Module. Proc. Chin. Soc. Electr. Eng. 2019, 39, 4876–4883+4989. [Google Scholar]
- Wang, X.; Zhang, B.; Wu, H. A Review of Fatigue Mechanism of Power Devices Based on Physics-of-Failure. Trans. China. Electrotech. Soc. 2019, 34, 717–727. [Google Scholar]
- Choi, U.M.; Blaabjerg, F.; Lee, K.B. Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems. IEEE Trans. Power Electron. 2015, 30, 2517–2533. [Google Scholar] [CrossRef]
- Choi, U.M.; Blaabjerg, F.; Jørgensen, S. Study on Effect of Junction Temperature Swing Duration on Lifetime of Transfer Molded Power IGBT Modules. IEEE Trans. Power Electron. 2017, 32, 6434–6443. [Google Scholar] [CrossRef] [Green Version]
- Chang, L. Study on Principle and Distortion of Diode Envelope Detection Circuit. Electron. Test 2013, 17, 34–36. [Google Scholar]
- Li, L.; Xu, Y.; Li, Z. Calculation Method of IGBT Module Junction Temperature Based on Electro-thermal Coupling Model. J. Power Supply 2016, 14, 23–28. [Google Scholar]
- Liu, B.; Wang, G.; Tseng, M.; Wu, K.; Li, Z. Exploring the Electro-Thermal Parameters of Reliable Power Modules: Insulated Gate Bipolar Transistor Junction and Case Temperature. Energies 2018, 11, 2371. [Google Scholar] [CrossRef] [Green Version]
- Hafezi, H.; Faranda, R. A New Approach for Power Losses Evaluation of IGBT/Diode Module. Electronics 2021, 10, 280. [Google Scholar] [CrossRef]
- Yang, X.; Zhai, X.; Long, S.; Li, M.; Dong, H.; He, Y. Insulated Gate Bipolar Transistor Reliability Study Based on Electro-Thermal Coupling Simulation. Electronics 2023, 12, 2116. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Li, W. Modeling and Analysis of IGBT Power Module Electro-thermal Coupling Model. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; pp. 1–6. [Google Scholar]
- Shuai, S.; Xiong, W.; Peng, Y.; Ai, X.; Liu, Y.; Zhu, L. IGBT Reliability Evaluation Based on Electro-thermal Coupling Model and Life Prediction. Electr. Power Sci. Eng. 2021, 37, 17–25. [Google Scholar]
- Li, G.; Du, X.; Sun, P.; Zhou, L.; Tai, H. Numerical IGBT junction temperature calculation method for lifetime estimation of power semiconductors in the wind power converters. In Proceedings of the 2014 International Power Electronics and Application Conference and Exposition, Shanghai, China, 5–8 November 2014; pp. 49–55. [Google Scholar]
- Bouzida, A.; Abdelli, R.; Ouadah, M. Calculation of IGBT power losses and junction temperature in inverter drive. In Proceedings of the 2016 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers, Algeria, 15–17 November 2016; pp. 768–773. [Google Scholar]
- Ma, K.; Liserre, M.; Blaabjerg, F. Reactive power control methods for improved reliability of wind power inverters under wind speed variations. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 3105–3112. [Google Scholar]
- Zheng, H.; Wang, X.; Wang, X.; Ran, L.; Zhang, B. Using SiC MOSFETs to improve reliability of EV inverters. In Proceedings of the 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2–4 November 2015; pp. 359–364. [Google Scholar]
- Lin, S.; Fang, X.; Lin, F.; Yang, Z.; Wang, X.; Taku, T. Lifetime Prediction of IGBT Modules Based on Mission Profiles in Traction Inverter Application. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–6. [Google Scholar]
- GopiReddy, L.; Tolbert, M.; Ozpineci, B. Lifetime prediction of IGBT in a STATCOM using modified-graphical rainflow counting algorithm. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 3425–3430. [Google Scholar]
- Cheng, T.; Lu, D.; Siwakoti, Y.P. Circuit-Based Rainflow Counting Algorithm in Application of Power Device Lifetime Estimation. Energies 2022, 15, 5159. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, F.; Yang, C.; Peng, T.; Zhou, L.; Yang, C. Converter Lifetime Modeling Based on Online Rainflow Counting Algorithm. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 1743–1748. [Google Scholar]
- GopiReddy, L.R.; Tolbert, L.M.; Ozpineci, B.; Pinto, J.O.P. Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications. IEEE Trans. Ind. Appl. 2015, 51, 3368–3375. [Google Scholar] [CrossRef]
- Bryant, A.T.; Mawby, P.A.; Palmer, P.R.; Santi, E.; Hudgins, J.L. Exploration of Power Device Reliability Using Compact Device Models and Fast Electrothermal Simulation. IEEE Trans. Ind. Appl. 2008, 44, 894–903. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Kwak, S. Enhance Reliability of Semiconductor Devices in Power Converters. Electronics 2020, 9, 2068. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.; Wang, C.; Wu, X.; Li, L. A Fusion Algorithm for Online Reliability Evaluation of Microgrid Inverter IGBT. Electronics 2020, 9, 1294. [Google Scholar] [CrossRef]
Impedance | Zth(j-c) | Zth(c-h) | Zth(h-a) | ||||
---|---|---|---|---|---|---|---|
i | 1 | 2 | 3 | 4 | |||
IGBT | Rthi(K/W) | 0.002767 | 0.012757 | 0.058870 | 0.008760 | 0.02 | 0.072 |
0.0008 | 0.0130 | 0.0500 | 0.6000 | 0.002 | 0.036 | ||
Diode | Rthi(K/W) | 0.008190 | 0.030940 | 0.081770 | 0.009100 | 0.02 | 0.072 |
0.0008 | 0.1300 | 0.0500 | 0.6000 | 0.002 | 0.036 |
Types | Parameters |
---|---|
Voltage sources (V) | 800 |
IGBT switching frequency (kHz) | 10 |
Grid-connected filter inductance (mH) | 1.5 |
The equivalent resistance (ohms) | 0.5 |
Grid-side voltage (V) | 220 |
Grid-side frequency (Hz) | 50 |
Sample time of junction temperature data (s) | 0.02 |
Sample time of simulation (s) | 1 × 10−6 |
Initial junction temperature (°C) | 100 |
IGBT Type | Infineon FF300R17ME4 |
Run | Pref (kW) | ΔT1 (°C) | ΔT2 (°C) | D1 | D2 | R |
---|---|---|---|---|---|---|
1 | 10~80 | 15.18 | 7.45 | 2.1604 × 10−10 | 5.5886 × 10−11 | 74.13% |
2 | 20~80 | 14.07 | 7.27 | 1.4769 × 10−10 | 4.4911 × 10−11 | 69.59% |
3 | 30~80 | 12.72 | 7.22 | 8.4034 × 10−11 | 4.0528 × 10−11 | 51.77% |
4 | 40~80 | 11.00 | 4.77 | 5.4057 × 10−11 | 3.2615 × 10−11 | 39.66% |
5 | 50~80 | 8.96 | 4.77 | 3.9386 × 10−11 | 3.4084 × 10−11 | 13.46% |
6 | 60~80 | 6.71 | 4.71 | 2.6574 × 10−11 | 2.8791 × 10−11 | −8.34% |
Run | (s) | ΔT1 (°C) | ΔT2 (°C) | D1 | D2 | R |
---|---|---|---|---|---|---|
1 | 5 | 11 | 9.76 | 5.4057 × 10−11 | 3.3294 × 10−11 | 38.41% |
2 | 15 | 11 | 6.21 | 5.4057 × 10−11 | 3.0798 × 10−11 | 43.03% |
3 | 20 | 11 | 5.8 | 5.4057 × 10−11 | 3.1368 × 10−11 | 41.97% |
4 | 30 | 11 | 5.63 | 5.4057 × 10−11 | 4.2434 × 10−11 | 21.50% |
5 | 40 | 11 | 4.83 | 5.4057 × 10−11 | 5.0462 × 10−11 | 6.65% |
6 | 50 | 11 | 4.1 | 5.4057 × 10−11 | 5.6153 × 10−11 | −3.88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Li, H.; Zhang, H.; Han, M. A Reactive Power Injection Algorithm for Improving the Microgrid Operational Reliability. Electronics 2023, 12, 2932. https://doi.org/10.3390/electronics12132932
Liu B, Li H, Zhang H, Han M. A Reactive Power Injection Algorithm for Improving the Microgrid Operational Reliability. Electronics. 2023; 12(13):2932. https://doi.org/10.3390/electronics12132932
Chicago/Turabian StyleLiu, Baoquan, Haoxuan Li, Haoming Zhang, and Meng Han. 2023. "A Reactive Power Injection Algorithm for Improving the Microgrid Operational Reliability" Electronics 12, no. 13: 2932. https://doi.org/10.3390/electronics12132932
APA StyleLiu, B., Li, H., Zhang, H., & Han, M. (2023). A Reactive Power Injection Algorithm for Improving the Microgrid Operational Reliability. Electronics, 12(13), 2932. https://doi.org/10.3390/electronics12132932