Optical Frequency Comb Generator Employing Two Cascaded Frequency Modulators and Mach–Zehnder Modulator
Abstract
1. Introduction
2. Principle of Operation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Fortier, T.; Baumann, E. 20 Years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 153. [Google Scholar] [CrossRef]
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.; Zhang, W.; Jin, W.; Qiu, K. Scalable and reconfigurable generation of flat optical comb for WDM-based next-generation broadband optical access networks. Opt. Commun. 2014, 321, 16–22. [Google Scholar] [CrossRef]
- Schibli, T.; Minoshima, K.; Hong, F.L.; Inaba, H.; Onae, A.; Matsumoto, H.; Hartl, I.; Fermann, M. Frequency metrology with a turnkey all-fiber system. In Proceedings of the Ultrafast Phenomena XIV: Proceedings of the 14th International Conference, Niigata, Japan, 25–30 July 2004; Springer: Berlin/Heidelberg, Germany, 2005; pp. 843–845. [Google Scholar]
- Cingöz, A.; Yost, D.C.; Allison, T.K.; Ruehl, A.; Fermann, M.E.; Hartl, I.; Ye, J. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 2012, 482, 68–71. [Google Scholar] [CrossRef]
- Jia, S.; Yu, X.; Hu, H.; Yu, J.; Guan, P.; Da Ros, F.; Galili, M.; Morioka, T.; Oxenløwe, L.K. THz photonic wireless links with 16-QAM modulation in the 375–450 GHz band. Opt. Express 2016, 24, 23777–23783. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, B.; Li, Z.; Liang, Y.; Qin, C.; Wang, C.; Xia, H.; Tan, T.; Yao, B. Optical frequency combs: From principles to applications. J. Electron. Sci. Technol. 2022, 20, 120–148. [Google Scholar] [CrossRef]
- Davila-Rodriguez, J.; Bagnell, K.; Delfyett, P.J. Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10,000 finesse etalon. Opt. Lett. 2013, 38, 3665–3668. [Google Scholar] [CrossRef] [PubMed]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr solitons in optical microresonators. Science 2018, 361, eaan8083. [Google Scholar] [CrossRef]
- Qu, K.; Zhao, S.; Li, X.; Zhu, Z.; Liang, D.; Liang, D. Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator. IEEE Photonics Technol. Lett. 2016, 29, 255–258. [Google Scholar] [CrossRef]
- Morohashi, I.; Sakamoto, T.; Sotobayashi, H.; Kawanishi, T.; Hosako, I. Broadband optical comb generation using mach-zehnder-modulator-based flat comb generator with feedback loop. In Proceedings of the 36th European Conference and Exhibition on Optical Communication, Turin, Italy, 19–23 September 2010; pp. 1–3. [Google Scholar]
- Wang, D.; Zhang, M.; Li, Z.; Li, J.; Fu, M.; Cui, Y.; Chen, X. Modulation format recognition and OSNR estimation using CNN-based deep learning. IEEE Photonics Technol. Lett. 2017, 29, 1667–1670. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, S. Cross-phase modulation based ultra-flat 90-line optical frequency comb generation. Opt. Quantum Electron. 2021, 53, 657. [Google Scholar] [CrossRef]
- Sakamoto, T.; Kawanishi, T.; Izutsu, M. Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator. Electron. Lett. 2007, 43, 1039–1040. [Google Scholar] [CrossRef]
- Ozharar, S.; Quinlan, F.; Ozdur, I.; Gee, S.; Delfyett, P. Ultraflat optical comb generation by phase-only modulation of continuous-wave light. IEEE Photonics Technol. Lett. 2007, 20, 36–38. [Google Scholar] [CrossRef]
- Mishra, A.K.; Schmogrow, R.; Tomkos, I.; Hillerkuss, D.; Koos, C.; Freude, W.; Leuthold, J. Flexible RF-based comb generator. IEEE Photonics Technol. Lett. 2013, 25, 701–704. [Google Scholar] [CrossRef]
- Yamamoto, T.; Komukai, T.; Suzuki, K.; Takada, A. Multicarrier light source with flattened spectrum using phase modulators and dispersion medium. J. Light. Technol. 2009, 27, 4297–4305. [Google Scholar] [CrossRef]
- Wu, R.; Supradeepa, V.; Long, C.M.; Leaird, D.E.; Weiner, A.M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 2010, 35, 3234–3236. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Zhang, H.; Yao, M. Improvement of flatness of optical frequency comb based on nonlinear effect of intensity modulator. Opt. Lett. 2011, 36, 2749–2751. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, H.; Yao, M. Generation of flat optical-frequency comb using cascaded intensity and phase modulators. IEEE Photonics Technol. Lett. 2012, 24, 727–729. [Google Scholar] [CrossRef]
- Wang, Q.; Huo, L.; Xing, Y.; Zhou, B. Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach–Zehnder modulator. Opt. Lett. 2014, 39, 3050–3053. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, J.; Li, Y.; Lin, J. Flat optical frequency comb generation and its application for optical waveform generation. Opt. Commun. 2013, 290, 37–42. [Google Scholar] [CrossRef]
- Hmood, J.K.; Emami, S.D.; Noordin, K.A.; Ahmad, H.; Harun, S.W.; Shalaby, H.M. Optical frequency comb generation based on chirping of Mach–Zehnder modulators. Opt. Commun. 2015, 344, 139–146. [Google Scholar] [CrossRef]
- Yan, X.; Zou, X.; Pan, W.; Yan, L.; Azaña, J. Fully digital programmable optical frequency comb generation and application. Opt. Lett. 2018, 43, 283–286. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, M.; Sun, H.; Khalil, M.; Adams, R.; Yim, K.; Jin, X.; Chen, L.R. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators. IEEE J. Quantum Electron. 2019, 55, 1–6. [Google Scholar] [CrossRef]
- Ullah, S.; Ullah, R.; Zhang, Q.; Khalid, H.A.; Memon, K.A.; Khan, A.; Tian, F.; Xiangjun, X. Ultra-wide and flattened optical frequency comb generation based on cascaded phase modulator and LiNbO3-MZM offering terahertz bandwidth. IEEE Access 2020, 8, 76692–76699. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Z.; Zuo, X.; Xu, Y.; Jiang, Y.; Yu, J.; Huang, Z. Flat optical frequency comb generation by using one DPMZM and superposed harmonics. Opt. Commun. 2023, 531, 129223. [Google Scholar] [CrossRef]
- Muhanad Fadhel, M.; Rashid, H.; Essa Hamzah, A.; Dzulkefly Zan, M.S.; Abd Aziz, N.; Arsad, N. Flat frequency comb generation employing cascaded single-drive Mach–Zehnder modulators with a simple analogue driving signal. J. Mod. Opt. 2021, 68, 536–541. [Google Scholar] [CrossRef]
- Fan, Y.; Li, P. Optical frequency comb based on cascaded MZM-EAM with Gaussian-shaped pulse signal. Opt. Eng. 2021, 60, 056106. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, S. Design of tunable optical frequency comb generation based on electro-optic modulator. Photonic Netw. Commun. 2022, 44, 133–140. [Google Scholar] [CrossRef]
- Demirtzioglou, I.; Lacava, C.; Bottrill, K.R.; Thomson, D.J.; Reed, G.T.; Richardson, D.J.; Petropoulos, P. Frequency comb generation in a silicon ring resonator modulator. Opt. Express 2018, 26, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, C.; Buscaino, B.; Shams-Ansari, A.; Kahn, J.M.; Loncar, M. Electro-optic frequency comb generation in ultrahigh-Q integrated lithium niobate micro-resonators. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 13–18 May 2018; Optica Publishing Group: Washington, DC, USA, 2018; p. FW3E-4. [Google Scholar]
- Kulagin, V.; Valuev, V.; Kontorov, S.; Kornienko, V.; Prokhorov, D.; Cherepenin, V. Optical frequency comb in optoelectronic oscillator with delay line and microresonator. In Proceedings of the 2022 International Conference Laser Optics (ICLO), Saint Petersburg, Russia, 20–24 June 2022; p. 1-1. [Google Scholar]
- Wu, X.; Tsang, H. Flat-top frequency comb generation with silicon microring modulator and filter. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 14–19 May 2017; pp. 1–2. [Google Scholar]
- Liu, Y.; Wu, S.; Shen, X. Ultra-Flat Optical Frequency Comb Generation Based on Electro-Optic Intensity Modulator with Digital Driving Signal. 2022. Available online: https://www.researchsquare.com/article/rs-1137183/v1 (accessed on 11 May 2022).
- Cui, Y.; Wang, Z.; Xu, Y.; Jiang, Y.; Yu, J.; Huang, Z. Generation of flat optical frequency comb using cascaded PMs with combined harmonics. IEEE Photonics Technol. Lett. 2022, 34, 490–493. [Google Scholar] [CrossRef]
- Shen, J.; Wu, S.; Li, D. Ultra-flat optical frequency comb generation based on phase modulation with simple digital driving signal. Optik 2019, 198, 163254. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.W.; Zhou, W.; Tang, X.; Shi, J.; Zhao, L.; Yu, J.; Chang, G.K. D-band mm-wave SSB vector signal generation based on cascaded intensity modulators. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Lin, C.T.; Lin, Y.M.; Chen, J.J.; Dai, S.P.; Shih, P.T.; Peng, P.C.; Chi, S. Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression. Opt. Express 2008, 16, 6056–6063. [Google Scholar] [CrossRef] [PubMed]
Parameters | First Case | Second Case (Proposed) |
---|---|---|
RF signal frequencies (, , and ) | = GHz, = GHz, and = 2 GHz | = GHz, = /2 GHz, and = 2 GHz |
Spectral components | Less | More |
Number of comb lines ( = 16 GHz) | 19 | 37 |
Number of comb lines ( = 8 GHz) | 38 | 71 |
Subcarrier Spacing ( = 16 GHz and 8 GHz) | 16 GHz, 8 GHz | 8 GHz, 4 GHz |
Power deviation | <1 dB | <2 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ujjwal; Kumar, R. Optical Frequency Comb Generator Employing Two Cascaded Frequency Modulators and Mach–Zehnder Modulator. Electronics 2023, 12, 2762. https://doi.org/10.3390/electronics12132762
Ujjwal, Kumar R. Optical Frequency Comb Generator Employing Two Cascaded Frequency Modulators and Mach–Zehnder Modulator. Electronics. 2023; 12(13):2762. https://doi.org/10.3390/electronics12132762
Chicago/Turabian StyleUjjwal, and Rajkishor Kumar. 2023. "Optical Frequency Comb Generator Employing Two Cascaded Frequency Modulators and Mach–Zehnder Modulator" Electronics 12, no. 13: 2762. https://doi.org/10.3390/electronics12132762
APA StyleUjjwal, & Kumar, R. (2023). Optical Frequency Comb Generator Employing Two Cascaded Frequency Modulators and Mach–Zehnder Modulator. Electronics, 12(13), 2762. https://doi.org/10.3390/electronics12132762