An Advanced Non-Interrupted Internal Calibration Model Based on Azimuth Modulation and Waveform Diversity for SAR Systems
Abstract
:1. Introduction
2. Principle of Internal Calibration
2.1. Transfer Function Derivation for Internal Calibration
2.2. Non-Interrupted Internal Calibration Scheme [19]
3. Proposed Internal Calibration Model and Schemes
3.1. Non-Interrupted Internal Calibration Model
3.2. First Internal Calibration Scheme
3.2.1. Timing Diagram
3.2.2. SNR Analysis and Processing Step
- step1:
- Range compression for signal.
- step2:
- After azimuth fast Fourier transform (FFT), the signal is extracted by a high pass filter.
- step3:
- Azimuth inverse FFT (IFFT) is carried out, then the signal is obtained via azimuth coherent integration every duration.
- step4:
- Obtain the compensation term and compensate for the echoes.
3.3. Second Internal Calibration Scheme
3.3.1. Timing Diagram
3.3.2. SNR Analysis and Processing Step
- step1:
- Multiply along the azimuth direction.
- step2:
- Range compression for signal.
- step3:
- Azimuth coherent integration every duration.
- step4:
- Obtain the compensation term and compensate for the echoes.
4. Simulation Experiment
4.1. SNR Analysis for Simulation Experiment
4.2. Experiment Using Sentinel-1 Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Theoretical Analysis for Upsampling Theory
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A. SAR Calibration: An Overview. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1107–1121. [Google Scholar] [CrossRef]
- Schwerdt, M.; Schmidt, K.; Ramon, N.T.; Klenk, P.; Yaguemartinez, N.; Pratsiraola, P.; Zink, M.; Geudtner, D. Independent System Calibration of Sentinel-1B. Remote Sens. 2017, 9, 511. [Google Scholar] [CrossRef] [Green Version]
- Brautigam, B.; Schwerdt, M.; Bachmann, M. An Efficient Method for Performance Monitoring of Active Phased Array Antennas. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1236–1243. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Zheng, H.; Wang, R.; Feng, J.; Liu, Y. Internal Calibration for Stepped-Frequency Chirp SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1105–1109. [Google Scholar] [CrossRef]
- Wang, S.; Qi, H.; Yu, W. Polarimetric SAR Internal Calibration Scheme Based on T/R Module Orthogonal Phase Coding. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3969–3980. [Google Scholar] [CrossRef]
- Jager, M.; Scheiber, R.; Reigber, A. Robust, Model-Based External Calibration of Multi-Channel Airborne SAR Sensors Using Range Compressed Raw Data. Remote Sens. 2019, 11, 2674. [Google Scholar] [CrossRef] [Green Version]
- Schwerdt, M.; Brautigam, B.; Bachmann, M.; Doring, B.; Schrank, D.; Gonzalez, J.H. TerraSAR-X Calibration Results. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Friedrichshafen, Germany, 2–5 June 2008; Volume 2, pp. 205–208. [Google Scholar]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Zink, M.; Bamler, R. X-SAR Radiometric Calibration and Data Quality. IEEE Trans. Geosci. Remote Sens. 1995, 33, 840–847. [Google Scholar] [CrossRef]
- Wang, P.; Sun, H.; Yu, W. A Novel Wireless Internal Calibration Method of Spaceborne SAR. J. Radars 2018, 7, 35–46. [Google Scholar]
- Schied, E.; Rostan, F.; Oestergaard, A.; Traver, I.N.; Snoeij, P. The Sentinel-1 C-SAR Internal Calibration. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 341–343. [Google Scholar]
- Wang, X.; Wang, R.; Deng, Y.; Wang, P.; Li, N.; Yu, W.; Wang, W. Precise Calibration of Channel Imbalance for Very High Resolution SAR With Stepped Frequency. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4252–4261. [Google Scholar] [CrossRef]
- Younis, M.; Rommel, T.; de Almeida, F.; Huber, S.; Martone, M.; Villano, M.; Krieger, G. Investigations on the Internal Calibration of Multi-Channel SAR. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5386–5389. [Google Scholar]
- Zink, M.; Torres, R.; Buck, C.H.; Rosich, B.; Closa, J. Calibration and Early Results of the ASAR on ENVISAT. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 1, pp. 596–598. [Google Scholar]
- Schwerdt, M.; Hounam, D.; Alvarezperes, J.; Molkenthin, T. The Calibration Concept of TerraSAR-X: A Multiple-Mode, High-Resolution SAR. Can. J. Remote Sens. 2005, 31, 30–36. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, R.; Wang, P. Improved Phase-Encoding Calibration for Active Phased-Array Antennas of SAR. IEEE Geosci. Remote Sens. Lett. 2016, 13, 767–771. [Google Scholar] [CrossRef]
- Younis, M.; de Almeida, F.Q.; Huber, S.; Laux, C.; Krieger, G. An Internal Instrument Calibration Simulator for Multi-Channel SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 9201–9204. [Google Scholar]
- Reimann, J.; Schwerdt, M. Technique for Concurrent Internal Calibration during Data Acquisition for SAR Systems. Remote Sens. 2020, 12, 1773. [Google Scholar] [CrossRef]
- Viet, H.T.; Minh, T.H. A Real-Time Internal Calibration Method for Radar Systems Using Digital Phase Array Antennas. In Proceedings of the Industrial Networks and Intelligent Systems: 7th EAI International Conference, INISCOM 2021, Hanoi, Vietnam, 22–23April 2021; Springer: Cham, Switzerland, 2021; pp. 88–103. [Google Scholar]
- Tran, V.H.; Hoang, M.T. Improving the Structure of a Signal Used for Real-Time Calibrating of the Receiving Channels of Digital Transceiver Modules in Digital Phased Antenna Arrays. J. Russ. Univ. Radioelectron. 2021, 24, 19–26. [Google Scholar]
- Brautigam, B.; Gonzalez, J.H.; Schwerdt, M.; Bachmann, M. TerraSAR-X Instrument Calibration Results and Extension for TanDEM-X. IEEE Trans. Geosci. Remote Sens. 2010, 48, 702–715. [Google Scholar] [CrossRef]
- Bordoni, F.; Younis, M.; Krieger, G. Ambiguity Suppression by Azimuth Phase Coding in Multichannel SAR Systems. IEEE Trans. Geosci. Remote Sens. 2011, 50, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Natsuaki, R.; Sakar, N.; Yague-Martinez, N.; Pinheiro, M.; Prats-Iraola, P. Investigations on the Optimum Combination of Azimuth Phase Coding and Up-and Down-Chirp Modulation for Range Ambiguity Suppression. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2288–2291. [Google Scholar]
- Dall, J.; Kusk, A. Azimuth Phase Coding for Range Ambiguity Suppression in SAR. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 3, pp. 1734–1737. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Schuchman, L. Dither Signals and Their Effect on Quantization Noise. IEEE Trans. Commun. 1964, 12, 162–165. [Google Scholar] [CrossRef]
- Villano, M.; Krieger, G.; Moreira, A. Nadir Echo Removal in Synthetic Aperture Radar via Waveform Diversity and Dual-Focus Postprocessing. IEEE Geosci. Remote Sens. Lett. 2018, 15, 719–723. [Google Scholar] [CrossRef]
- Villano, M.; Krieger, G.; Jäger, M.; Moreira, A. Staggered SAR: Performance Analysis and Experiments With Real Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6617–6638. [Google Scholar] [CrossRef]
- Villano, M.; Krieger, G.; Moreira, A. Staggered SAR: High-Resolution Wide-Swath Imaging by Continuous PRI Variation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4462–4479. [Google Scholar] [CrossRef]
- Tan, L.; Jiang, J. Digital Signal Processing: Fundamentals and Applications; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
Azimuth Time | 0 | PRT | 2PRT | 3PRT | … | 2n · PRT | (2n + 1) · PRT |
---|---|---|---|---|---|---|---|
Scheme proposed in [19] | 1 | 1 | 1 | 1 | … | 1 | 1 |
Proposed first scheme | 1 | 0 | 1 | 0 | … | 1 | 0 |
Proposed second scheme | 1 | −1 | 1 | −1 | … | 1 | −1 |
Parameter | Symbol | Value |
---|---|---|
Carrier frequency | 9.6 GHz | |
Wavelength | 0.0312 m | |
Velocity | V | 7000 m/s |
Azimuth bandwidth | 3100 Hz | |
Pulse repetition frequency | 4000 Hz | |
Antenna length | 4 m | |
Azimuth duration | 10 s | |
Range pulse bandwidth | 80 MHz | |
Range pulse width | 70 μs |
Parameter | Symbol | Value |
---|---|---|
Carrier frequency | 5.405 GHz | |
Pulse repetition frequency | 1650 Hz | |
Azimuth duration | 15.3136 s | |
Range pulse bandwidth | 50.6 MHz | |
Sampling frequency | 56.3 MHz | |
Range pulse width | 51.50 μs |
Scheme | Image Disturbances | SNR of Signal | |||
---|---|---|---|---|---|
Mean | Max | ||||
Scheme proposed in [19] | −31.7 dB | 0.0019 deg. | −18.4 dB | 360 deg. | 26.8 dB |
Proposed first scheme | −34.4 dB | 0.0017 deg. | −19.6 dB | 360 deg. | 29.8 dB |
Proposed second scheme | −35.8 dB | 0.0012 deg. | −20.5 dB | 360 deg. | 36.0 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Pang, X. An Advanced Non-Interrupted Internal Calibration Model Based on Azimuth Modulation and Waveform Diversity for SAR Systems. Electronics 2023, 12, 2677. https://doi.org/10.3390/electronics12122677
Liang D, Pang X. An Advanced Non-Interrupted Internal Calibration Model Based on Azimuth Modulation and Waveform Diversity for SAR Systems. Electronics. 2023; 12(12):2677. https://doi.org/10.3390/electronics12122677
Chicago/Turabian StyleLiang, Da, and Xiaoyu Pang. 2023. "An Advanced Non-Interrupted Internal Calibration Model Based on Azimuth Modulation and Waveform Diversity for SAR Systems" Electronics 12, no. 12: 2677. https://doi.org/10.3390/electronics12122677
APA StyleLiang, D., & Pang, X. (2023). An Advanced Non-Interrupted Internal Calibration Model Based on Azimuth Modulation and Waveform Diversity for SAR Systems. Electronics, 12(12), 2677. https://doi.org/10.3390/electronics12122677