A Spectral Enhancement Method Based on Remote-Sensing Images for High-Speed Railways
Abstract
:1. Introduction
2. Related Works
3. Edge-Preserving Adaptive CS Algorithm
3.1. Fused Image Detail Information Extraction
3.1.1. Acquisition
- Acquisition of the guided image using a Gaussian filter.
- 2.
- Edge recovery using a joint bilateral filter.
3.1.2. Acquisition
3.2. Gain Factor Selection
3.3. Enhancement of Fusion Image Detail Information
3.4. HRMS Image Acquisition
4. Experimental Results and Analysis
4.1. Selection of Data and Evaluation Indicators
- Root Mean Square Error (RMSE):
- Relative Average Spectral Error (RASE):
- Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS):
- Spectral Angle Mapper (SAM):
- Universal Image Quality Index (UIQI)
- Quality with No Reference (QNR):
4.2. Comparison of Fusion Effects
4.2.1. Comparison of the Improvement Effects of Different Fusion Image Methods
- (1)
- Comparison of the effects of versus
- (2)
- Comparison of MTF filter optimization status
- (3)
- Comparison of image information with and without guided filtering enhancement
4.2.2. Comparison of the Effects of the Complete Algorithm
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EPGAS | SAM | QNR | |
---|---|---|---|
K = 4, = 3, = 0.8, = 0.1 | |||
r = 2 | 2.3356 | 3.5350 | 0.7952 |
r = 4 | 2.3434 | 3.6069 | 0.8015 |
r = 6 | 2.3930 | 3.7763 | 0.8070 |
r = 8 | 2.4232 | 3.8624 | 0.8091 |
K = 4, = 3, = 0.8, r = 3 | |||
ε = 0.1 | 2.3356 | 3.5350 | 0.7952 |
ε = 0.2 | 2.3594 | 3.5096 | 0.7921 |
ε = 0.4 | 2.3611 | 3.5103 | 0.7920 |
K = 4, = 3, r = 3, = 0.1 | |||
= 0.2 | 2.5036 | 3.5209 | 0.7878 |
= 0.4 | 2.3754 | 3.5087 | 0.7910 |
= 0.6 | 2.3615 | 3.5086 | 0.7918 |
= 0.8 | 2.3356 | 3.5350 | 0.7952 |
K = 4, = 0.8, r = 3 and = 0.1 | |||
= 2 | 2.7095 | 3.5253 | 0.8277 |
= 3 | 2.3356 | 3.5350 | 0.7952 |
= 4 | 2.3739 | 3.6945 | 0.7679 |
= 6 | 2.9094 | 5.0023 | 0.7435 |
= 3, = 0.8, r = 3 and = 0.1 | |||
K = 2 | 2.3356 | 3.5350 | 0.7922 |
K = 4 | 2.3356 | 3.5350 | 0.7952 |
K = 6 | 2.3356 | 3.5350 | 0.7921 |
References
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A Critical Comparison Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2265–2586. [Google Scholar] [CrossRef]
- Vivone, G.; Dalla Mura, M.; Garzelli, A.; Restaino, R.; Scarpa, G.; Ulfarsson, M.O.; Alparone, L.; Chanussot, J. A New Benchmark Based on Recent Advances in Multispectral Pansharpening: Revisiting pansharpening with classical and emerging pansharpening methods. IEEE Geosci. Remote Sens. Mag. 2020, 9, 53–81. [Google Scholar] [CrossRef]
- Nason, G.P.; Silverman, B.W. The Stationary Wavelet Transform and Some Statistical Applications; Springer: New York, NY, USA, 1995; pp. 281–299. [Google Scholar] [CrossRef]
- Do, M.N.; Vetterli, M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 2005, 14, 2091–2106. [Google Scholar] [CrossRef] [Green Version]
- Aiazzi, A.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- González-Audícana, M.; Otazu, X.; Fors, O.; Seco, A. Comparison between Mallat’s and the ‘a trous’ discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. Int. J. Remote Sens. 2005, 26, 595–614. [Google Scholar] [CrossRef]
- Ma, X.; Hu, S.; Liu, S.; Fang, J.; Xu, S. Remote Sensing Image Fusion Based on Sparse Representation and Guided Filtering. Electronics 2019, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-Driven Fusion of High Spatial and Spectral Resolution Images Based on Oversampled Multiresolution Analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Garzelli, A.; Nencini, F. Interband structure modeling for Pan-sharpening of very high-resolution multispectral images. Inf. Fusion 2005, 6, 213–224. [Google Scholar] [CrossRef]
- Alparone, L.; Garzelli, A.; Vivone, G. Intersensor Statistical Matching for Pansharpening: Theoretical Issues and Practical Solutions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4682–4695. [Google Scholar] [CrossRef]
- Jiao, J.; Wu, L. Pansharpening with a Gradient Domain GIF Based on NSST. Electronics 2019, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Wu, L.; Qian, K. A Segmentation-Cooperated Pansharpening Method Using Local Adaptive Spectral Modulation. Electronics 2019, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Carper, W.J.; Lillesand, T.M.; Kiefer, P.W. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Chavez, A.; Kwarteng, P. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving Component Substitution Pansharpening Through Multivariate Regression of MS +Pan Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Choi, J.; Yu, K.; Kim, Y. A New Adaptive Component-Substitution-Based Satellite Image Fusion by Using Partial Replacement. IEEE Trans. Geosci. Remote Sens. 2010, 49, 295–309. [Google Scholar] [CrossRef]
- Wang, Z.; Ziou, D.; Armenakis, C.; Li, D.; Li, Q. A comparative analysis of image fusion methods. IEEE Trans. Geoence Remote Sens. 2005, 43, 1391–1402. [Google Scholar] [CrossRef]
- Garzelli, A.; Nencini, F.; Capobianco, L. Optimal mmse pan sharpening of very high resolution multispectral images. IEEE Trans. Geosci. Remote Sens. 2007, 46, 228–236. [Google Scholar] [CrossRef]
- Lari, S.N.; Yazdi, M. Improved IHS pan-sharpening method based on adaptive injection of à trous wavelet decomposition. Int. J. Signal Process. Image Process. Pattern Recognit. 2016, 9, 291–308. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, Y.; Chen, Y.; Wu, D. Combining component substitution and multiresolution analysis: A novel generalized BDSD pansharpening algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2867–2875. [Google Scholar] [CrossRef]
- Liu, P. Pansharpening with transform-based gradient transferring model. IET Image Process. 2019, 13, 2614–2622. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Y.; Qu, J.; Xiao, S.; Du, Q. Hyperspectral pansharpening via local intensity component and local injection gain estimation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. Multispectral and panchromatic image fusion based on spatial consistency. Int. J. Remote Sens. 2018, 39, 1017–1041. [Google Scholar] [CrossRef]
- Li, Z.; Leung, H. Fusion of multispectral and panchromatic images using a restoration-based method. IEEE Trans. Geosci. Remote Sens. 2008, 47, 1482–1491. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, H.; Gong, W.; Zhang, H. Adjustable model-based fusion method for multispectral and panchromatic images. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2012, 42, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Fei, R.; Zhang, J.S.; Liu, J.; Du, F.; Chang, P.; Hu, J. Manifold regularized sparse representation of injected details for pansharpening. Int. J. Remote Sens. 2019, 40, 8395–8417. [Google Scholar] [CrossRef]
- Massip, P.; Blanc, P.; Wald, L. A Method to Better Account for Modulation Transfer Functions in ARSIS-Based Pansharpening Methods. IEEE Trans. Geosci. Remote Sens. 2011, 50, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Yuwei, Z.; Pinglv, Y.; Qiang, C.; Quansen, S. Pan-sharpening model based on MTF and variational method. Acta Autom. Sin. 2015, 41, 342–352. [Google Scholar] [CrossRef]
- He, K.M.; Sun, J.; Xiaoou, T. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Wald, L. Data Fusion: Definitions and Architectures-Fusion of Images of Different Spatial Resolutions; Les Presses de l’ École des Mines: Paris, France, 2002. [Google Scholar]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm. In Proceedings of the Summaries 3rd Annual JPL Air-Bone Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; pp. 147–149. [Google Scholar]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and Panchromatic Data Fusion Assessment Without Reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef] [Green Version]
ERGAS | SAM | DS | ||
---|---|---|---|---|
Improved IHS | 3.8855 | 4.0969 | 0.0930 | 0.1943 |
Original IHS | 3.0250 | 4.9747 | 0.1692 | 0.3700 |
ERGAS | SAM | DS | ||
---|---|---|---|---|
Bilinear interpolation filtering | 2.6051 | 5.0796 | 0.0930 | 0.1943 |
Low-pass filtering based on MTF | 2.3356 | 3.5350 | 0.0793 | 0.2961 |
ERGAS | SAM | RASE | ||
---|---|---|---|---|
GF is not used | 3.0447 | 3.8588 | 23.7845 | 0.0865 |
GF is used | 2.3356 | 3.5350 | 18.4927 | 0.0793 |
Underlying Logic | Reference | ERGAS | SAM | RMSE | RASE | UIQI | Ds | QNR | |
---|---|---|---|---|---|---|---|---|---|
CS | GIHS | 0.7712 | 1.6332 | 0.0393 | 7.0554 | 0.9643 | 0.1801 | 0.3283 | 0.5507 |
PCA | 0.7843 | 1.8182 | 0.0411 | 7.3727 | 0.9634 | 0.1322 | 0.2879 | 0.6180 | |
GS | 0.7792 | 1.7442 | 0.0403 | 7.2331 | 0.9624 | 0.1276 | 0.2908 | 0.6188 | |
Brovey | 0.9216 | 1.6728 | 0.0403 | 7.2386 | 0.9623 | 0.1634 | 0.3137 | 0.5741 | |
BDSD | 0.5939 | 1.7495 | 0.0307 | 5.4830 | 0.9810 | 0.0957 | 0.2545 | 0.6741 | |
PRACS | 0.5297 | 1.6732 | 0.0386 | 5.1288 | 0.9820 | 0.0908 | 0.2512 | 0.6809 | |
IHS-ATW | 0.5847 | 1.7356 | 0.0312 | 5.2748 | 0.9785 | 0.0966 | 0.2478 | 0.6795 | |
PTBGT | 0.5798 | 1.7421 | 0.0347 | 5.4716 | 0.9736 | 0.0975 | 0.2316 | 0.6954 | |
MRA | HPF | 0.5908 | 1.5210 | 0.0311 | 5.5842 | 0.9787 | 0.0967 | 0.1644 | 0.7548 |
MTF-GLP | 0.5776 | 1.5759 | 0.0307 | 5.3676 | 0.9810 | 0.1220 | 0.2348 | 0.6724 | |
MTF-GLP-CBD | 0.6792 | 1.6201 | 0.0356 | 6.3719 | 0.9740 | 0.1218 | 0.2139 | 0.6904 | |
MTF-GLP-ECB | 0.5941 | 1.5925 | 0.0315 | 5.6428 | 0.9790 | 0.0677 | 0.1403 | 0.8015 | |
EPACS | 0.5927 | 1.7676 | 0.0306 | 5.5018 | 0.9826 | 0.0601 | 0.1183 | 0.8287 |
Underlying Logic | Reference | ERGAS | SAM | RMSE | RASE | UIQI | Ds | QNR | |
---|---|---|---|---|---|---|---|---|---|
CS | GIHS | 3.0250 | 4.9747 | 0.0211 | 25.3484 | 0.9635 | 0.1692 | 0.3700 | 0.5234 |
PCA | 2.9820 | 5.2747 | 0.0201 | 24.1421 | 0.9665 | 0.1665 | 0.3651 | 0.5292 | |
GS | 3.0448 | 5.0617 | 0.0208 | 24.8984 | 0.9644 | 0.1632 | 0.3664 | 0.5302 | |
Brovey | 2.8966 | 3.8172 | 0.0202 | 24.2460 | 0.9667 | 0.1104 | 0.3192 | 0.6056 | |
BDSD | 2.5411 | 4.3736 | 0.0170 | 20.2631 | 0.9753 | 0.0224 | 0.1808 | 0.8008 | |
PRACS | 2.8964 | 4.2900 | 0.0176 | 21.2283 | 0.9768 | 0.0830 | 0.2488 | 0.6888 | |
IHS-ATW | 2.4487 | 4.3846 | 0.0165 | 20.4300 | 0.9766 | 0.0754 | 0.2356 | 0.7067 | |
PTBGT | 2.4803 | 4.3500 | 0.0171 | 21.6530 | 0.9758 | 0.0633 | 0.2433 | 0.7088 | |
MRA | HPF | 2.8766 | 3.1819 | 0.0189 | 22.6973 | 0.9721 | 0.1327 | 0.2426 | 0.6569 |
MTF-GLP | 2.6046 | 4.0451 | 0.0169 | 20.2425 | 0.9787 | 0.1510 | 0.3103 | 0.5856 | |
MTF-GLP-CBD | 2.8059 | 4.0782 | 0.0186 | 22.1715 | 0.9753 | 0.1527 | 0.2884 | 0.6029 | |
MTF-GLP-ECB | 2.6230 | 3.8263 | 0.0170 | 20.3708 | 0.9785 | 0.0775 | 0.1876 | 0.7550 | |
EPACS | 2.3356 | 3.5350 | 0.0154 | 18.4927 | 0.9822 | 0.0222 | 0.1867 | 0.7952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, D.; Li, Y.; Qiu, S.; Jin, W.; Guo, H. A Spectral Enhancement Method Based on Remote-Sensing Images for High-Speed Railways. Electronics 2023, 12, 2670. https://doi.org/10.3390/electronics12122670
Zuo D, Li Y, Qiu S, Jin W, Guo H. A Spectral Enhancement Method Based on Remote-Sensing Images for High-Speed Railways. Electronics. 2023; 12(12):2670. https://doi.org/10.3390/electronics12122670
Chicago/Turabian StyleZuo, Dongsheng, Yingjie Li, Su Qiu, Weiqi Jin, and Hong Guo. 2023. "A Spectral Enhancement Method Based on Remote-Sensing Images for High-Speed Railways" Electronics 12, no. 12: 2670. https://doi.org/10.3390/electronics12122670
APA StyleZuo, D., Li, Y., Qiu, S., Jin, W., & Guo, H. (2023). A Spectral Enhancement Method Based on Remote-Sensing Images for High-Speed Railways. Electronics, 12(12), 2670. https://doi.org/10.3390/electronics12122670