A Machine Learning-Assisted Inversion Method for Solving Biomedical Imaging Based on Semi-Experimental Data
Abstract
:1. Introduction
2. Forward Problem and Simulation System
2.1. Forward Problem
2.2. The Imaging System
3. Inverse Problem and U-Net
3.1. Back-Propagation Scheme (BPS)
3.2. U-Net Convolutional Neural Network
4. Details of Implements
4.1. Simulation Setup of the Imaging System
4.2. Calibration Method
4.3. Training Process
5. Numerical Results
5.1. First Example: MNIST Data with Random Circular-Cylinder
5.2. Second Example: Circular-Cylinder
5.3. Third Example: Austira
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, T.J.; Qin, Y.; Wang, G.L.; Chew, W.C. Low-frequency detection of two-dimensional buried objects using high-order extended Born approximations. Inverse Probl. 2004, 20, S41. [Google Scholar] [CrossRef]
- Franzone, C.P.; Pavarino, L.F.; Savare, G. Complex Systems in Biomedicine; Springer: Milan, Italy, 2006. [Google Scholar]
- Ali, S.M.; Nikolova, N.K.; Bakr, M.H. Non-destructive testing and evaluation utilizing frequency-domain EM modeling. Parameters 2005, 1, 2. [Google Scholar]
- Hoang, T.X.; Duan, Y.; Chen, X.D.; Barbastathis, G. Focusing and imaging in microsphere-based microscopy. Opt. Express 2015, 23, 12337–12353. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Computational Methods for Electromagnetic Inverse Scattering; John Wiley & Sons: Hoboken, NY, USA, 2018. [Google Scholar]
- Nikolova, N.K. Microwave Imaging for Breast Cancer. IEEE Microw. Mag. 2011, 12, 78–94. [Google Scholar] [CrossRef]
- Bond, E.; Li, X.; Hagness, S.; Van Veen, B. Microwave imaging via space-time beamforming for early detection of breast cancer. IEEE Trans. Antennas Propag. 2003, 51, 1690–1705. [Google Scholar] [CrossRef] [Green Version]
- Fear, E.; Li, X.; Hagness, S.; Stuchly, M. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 2002, 49, 812–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, B.J.; Abbosh, A.M.; Mustafa, S.; Ireland, D. Microwave System for Head Imaging. IEEE Trans. Instrum. Meas. 2014, 63, 117–123. [Google Scholar] [CrossRef]
- Sultan, K.S.; Mohammed, B.; Manoufali, M.; Abbosh, A.M. Portable Electromagnetic Knee Imaging System. IEEE Trans. Antennas Propag. 2021, 69, 6824–6837. [Google Scholar] [CrossRef]
- Chew, W.C.; Wang, Y.M. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imaging 1990, 9, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D. Subspace-Based Optimization Method for Solving Inverse-Scattering Problems. IEEE Trans. Geosci. Remote. Sens. 2009, 48, 42–49. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, X.D. Twofold subspace-based optimization method for solving inverse scattering problems. Inverse Probl. 2009, 25, 85003–85013. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Song, R.C.; Xu, K.W.; Ye, X.Z.; Li, C.; Chen, X. Deep Learning Based Inverse Scattering with Structural Similarity Loss Functions. IEEE Sens. J. 2020, 21, 4900–4907. [Google Scholar] [CrossRef]
- Xu, K.W.; Wu, L.; Ye, X.Z.; Chen, X.D. Deep Learning-Based Inversion Methods for Solving Inverse Scattering Problems with Phaseless Data. IEEE Trans. Antennas Propag. 2020, 68, 7457–7470. [Google Scholar] [CrossRef]
- Song, R.C.; Huang, Y.Y.; Ye, X.Z.; Xu, K.W.; Li, C.; Chen, X. Learning-Based Inversion Method for Solving Electromagnetic Inverse Scattering With Mixed Boundary Conditions. IEEE Trans. Antennas Propag. 2022, 70, 6218–6228. [Google Scholar] [CrossRef]
- Li, L.L.; Wang, L.G.; Teixeira, F.L.; Liu, C.; Nehorai, A.; Cui, T.J. DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering. IEEE Trans. Antennas Propag. 2018, 67, 1819–1825. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.Z.; Bai, Y.K.; Song, R.C.; Xu, K.W.; An, J.P. An Inhomogeneous Background Imaging Method Based on Generative Adversarial Network. IEEE Trans. Microw. Theory Tech. 2020, 68, 4684–4693. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X.D. Deep-Learning Schemes for Full-Wave Nonlinear Inverse Scattering Problems. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 1849–1860. [Google Scholar] [CrossRef]
- Belkebir, K.; Chaumet, P.C.; Sentenac, A. Superresolution in total internal reflection tomography. JOSA A 2005, 22, 1889–1897. [Google Scholar] [CrossRef] [Green Version]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Du, N.K.; Ji, Y.H.; Ye, X.Z. Improvement of Vivaldi Antenna in Microwave Imaging System. In Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 28–31 July 2021. [Google Scholar] [CrossRef]
- Ji, Y.H.; Du, N.K.; Ye, X.Z. Microwave Inverse Scattering Imaging system: Calibration of Theoretical and Measured Scattered Field Values. In Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 28–31 July 2021. [Google Scholar] [CrossRef]
- Hasgall, P.A.; Neufeld, E.; Gosselin, M.C.; Klingenbck, A.; Kuster, N. ITIS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0. 2018. Available online: https://itis.swiss/virtual-population/tissue-properties/downloads/database-v4-0/. (accessed on 11 February 2022).
- Lui, H.S.; Fhager, A.; Persson, M. Matching medium for biomedical microwave imaging. In Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP), Hobart, Australia, 9–12 November 2015. [Google Scholar]
Tissues | Skin | Blood | Fat | Muscle |
---|---|---|---|---|
Real part | 44.9149 | 63.2572 | 11.5400 | 56.4454 |
Imaginary part | 26.1865 | 49.7333 | 3.06836 | 29.5676 |
Average Relative Error | SSIM | |
---|---|---|
MOM + U-net CNN | 14.01% | 0.8501 |
HFSS + U-net CNN | 12.93% | 0.8540 |
Average Relative Error | SSIM | |
---|---|---|
MOM + U-net CNN | 1.00% | 0.9411 |
HFSS + U-net CNN | 0.58% | 0.9438 |
Average Relative Error | SSIM | |
---|---|---|
MOM + U-net CNN | 5.27% | 0.7958 |
HFSS + U-net CNN | 4.39% | 0.8045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Du, N.; Yin, T.; Song, R.; Xu, K.; Sun, S.; Ye, X. A Machine Learning-Assisted Inversion Method for Solving Biomedical Imaging Based on Semi-Experimental Data. Electronics 2023, 12, 2623. https://doi.org/10.3390/electronics12122623
Wang J, Du N, Yin T, Song R, Xu K, Sun S, Ye X. A Machine Learning-Assisted Inversion Method for Solving Biomedical Imaging Based on Semi-Experimental Data. Electronics. 2023; 12(12):2623. https://doi.org/10.3390/electronics12122623
Chicago/Turabian StyleWang, Jing, Naike Du, Tiantian Yin, Rencheng Song, Kuiwen Xu, Sheng Sun, and Xiuzhu Ye. 2023. "A Machine Learning-Assisted Inversion Method for Solving Biomedical Imaging Based on Semi-Experimental Data" Electronics 12, no. 12: 2623. https://doi.org/10.3390/electronics12122623
APA StyleWang, J., Du, N., Yin, T., Song, R., Xu, K., Sun, S., & Ye, X. (2023). A Machine Learning-Assisted Inversion Method for Solving Biomedical Imaging Based on Semi-Experimental Data. Electronics, 12(12), 2623. https://doi.org/10.3390/electronics12122623