Characteristics of Offset Corbino Thin Film Transistor: A Physical Model
Abstract
:1. Introduction
2. Device Structure of Model
3. Results and Discussion
3.1. Formula
3.2. Simulation
3.3. Experimental Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, Y.H.; Kim, K.B.; Hwang, C.S.; Park, D.J.; Lee, J.H.; Kang, K.Y.; Hur, J.H.; Jang, J. Active-matrix field-emission display based on a CNT emitter and a-Si TFTs. J. Soc. Inf. Disp. 2005, 13, 241–244. [Google Scholar] [CrossRef]
- Marette, A.; Poulin, A.; Besse, N.; Rosset, S.; Briand, D.; Shea, H. Flexible zinc–tin oxide thin film transistors operating at 1 kV for integrated switching of dielectric elastomer actuators arrays. Adv. Mater. 2017, 29, 1700880. [Google Scholar] [CrossRef] [PubMed]
- Karpelson, M.; Wei, G.-Y.; Wood, R.J. Driving high voltage piezoelectric actuators in microrobotic applications. Sens. Actuators A 2012, 176, 78–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, Z.; Wang, T.; Huo, W.; Cui, S.; Liang, H.; Du, X. Flexible transparent high-voltage diodes for energy management in wearable electronics. Nano Energy 2017, 40, 289–299. [Google Scholar] [CrossRef]
- Galazka, Z.; Uecker, R.; Irmscher, K.; Albrecht, M.; Klimm, D.; Pietsch, M.; Brützam, M.; Bertram, R.; Ganschow, S.; Fornari, R. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol. 2010, 45, 1229–1236. [Google Scholar] [CrossRef]
- Hasegawa, H.; Kawabe, U.; Aita, T.; Ishiba, T. Single crystal growth of layered perovskite metal oxides. Jpn. J. Appl. Phys. 1987, 26, L673. [Google Scholar] [CrossRef]
- Seki, S.; Kogure, O.; Tsujiyama, B. Leakage current characteristics of offset-gate-structure polycrystalline-silicon MOSFET’s. IEEE Electron Device Lett. 1987, 8, 434–436. [Google Scholar] [CrossRef]
- Unagami, T. High-voltage poly-Si TFTs with multichannel structure. IEEE Trans. Electron Devices 1988, 35, 2363–2367. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Lewis, A.; Wu, I.-W.; Chiang, A.; Bruce, R. New intra-gate-offset high-voltage thin-film transistor with misalignment immunity. Electron. Lett. 1989, 25, 544–545. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Wu, I.-W.; Lewis, A.G.; Chiang, A.; Bruce, R.H. A simpler 100-V polysilicon TFT with improved turn-on characteristics. IEEE Electron Device Lett. 1990, 11, 244–246. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Wu, I.-W.; Lewis, A.; Chiang, A.; Bruce, R. Device sensitivity of field-plated polysilicon high-voltage TFTs and their application to low-voltage operation. IEEE Electron Device Lett. 1990, 11, 541–543. [Google Scholar] [CrossRef]
- Park, C.; Billah, M.M.; Siddik, A.B.; Lee, S.; Han, B.; Jang, J. High Voltage Amorphous InGaZnO TFT with F Doped Drain Offset Structure. IEEE Electron Device Lett. 2021, 42, 1476–1479. [Google Scholar] [CrossRef]
- Wu, M.-H.; Lin, H.-C.; Li, P.-W. Film-profile-engineered ZnO thin-film transistor with gate/drain offset for high-voltage operation. Jpn. J. Appl. Phys. 2019, 58, 066502. [Google Scholar] [CrossRef]
- Saito, W.; Kakiuchi, Y.; Nitta, T.; Saito, Y.; Noda, T.; Fujimoto, H.; Yoshioka, A.; Ohno, T.; Yamaguchi, M. Field-plate structure dependence of current collapse phenomena in high-voltage GaN-HEMTs. IEEE Electron Device Lett. 2010, 31, 659–661. [Google Scholar] [CrossRef]
- Saito, W.; Nitta, T.; Kakiuchi, Y.; Saito, Y.; Tsuda, K.; Omura, I.; Yamaguchi, M. On-resistance modulation of high voltage GaN HEMT on sapphire substrate under high applied voltage. IEEE Electron Device Lett. 2007, 28, 676–678. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, S.-L.; Hou, B.; Wang, C.; Zheng, X.-F.; Ma, X.-H.; Zhang, J.-C.; Hao, Y. Improvement of the off-state breakdown voltage with field plate and low-density drain in AlGaN/GaN high-electron mobility transistors. Chin. Phys. B 2015, 24, 037304. [Google Scholar] [CrossRef]
- Saito, W.; Nitta, T.; Kakiuchi, Y.; Saito, Y.; Tsuda, K.; Omura, I.; Yamaguchi, M. Suppression of dynamic on-resistance increase and gate charge measurements in high-voltage GaN-HEMTs with optimized field-plate structure. IEEE Trans. Electron Devices 2007, 54, 1825–1830. [Google Scholar] [CrossRef]
- Dora, Y.; Chakraborty, A.; Mccarthy, L.; Keller, S.; DenBaars, S.; Mishra, U. High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett. 2006, 27, 713–715. [Google Scholar] [CrossRef]
- Huo, W.; Liang, H.; Lu, Y.; Han, Z.; Zhu, R.; Sui, Y.; Wang, T.; Mei, Z. Dual-active-layer InGaZnO high-voltage thin-film transistors. Semicond. Sci. Technol. 2021, 36, 065021. [Google Scholar] [CrossRef]
- Yang, G.; Li, M.; Yu, Z.; Xu, Y.; Sun, H.; Liu, S.; Sun, W.; Wu, W. High-Voltage a-IGZO TFTs With the Stair Gate-Dielectric Structure. IEEE Trans. Electron Devices 2021, 68, 4462–4466. [Google Scholar] [CrossRef]
- Karim, K.S.; Servati, P.; Nathan, A. High voltage amorphous silicon TFT for use in large area applications. Microelectron. J. 2004, 35, 311–315. [Google Scholar] [CrossRef]
- Martin, R.A.; Da Costa, V.M.; Hack, M.; Shaw, J.G. High-voltage amorphous silicon thin-film transistors. IEEE Trans. Electron Devices 1993, 40, 634–644. [Google Scholar] [CrossRef]
- Unagami, T.; Kogure, O. High-voltage TFT fabricated in recrystallized polycrystalline silicon. IEEE Trans. Electron Devices 1988, 35, 314–319. [Google Scholar] [CrossRef]
- Yu, M.-J.; Lin, R.-P.; Chang, Y.-H.; Hou, T.-H. High-Voltage Amorphous InGaZnO TFT With Al2O3 High-k Dielectric for Low-Temperature Monolithic 3-D Integration. IEEE Trans. Electron Devices 2016, 63, 3944–3949. [Google Scholar] [CrossRef]
- Chow, E.M.; Lu, J.P.; Ho, J.; Shih, C.; De Bruyker, D.; Rosa, M.; Peeters, E. High voltage thin film transistors integrated with MEMS. Sens. Actuators A 2006, 130, 297–301. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Liu, C.; Ou, H.; She, J.; Deng, S.; Chen, J. Kilo-voltage thin-film transistors for driving nanowire field emitters. IEEE Electron Device Lett. 2020, 41, 405–408. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Kong, J.; Ou, H.; She, J.; Deng, S.; Chen, J. Widely Adjusting the Breakdown Voltages of Kilo-voltage Thin Film Transistors. IEEE Electron Device Lett. 2022, 43, 240–243. [Google Scholar] [CrossRef]
- Hong, W.-C.; Ku, C.-J.; Li, R.; Abbaslou, S.; Reyes, P.; Wang, S.-Y.; Li, G.; Lu, M.; Sheng, K.; Lu, Y. MgZnO high voltage thin film transistors on glass for inverters in building integrated photovoltaics. Sci. Rep. 2016, 6, 34169. [Google Scholar] [CrossRef]
- Hong, W.-C.; Zhang, Y.; Wang, S.-Y.; Li, Y.; Alim, N.; Du, X.; Mei, Z.; Lu, Y. ZnO flexible high voltage thin film transistors for power management in wearable electronics. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36, 050601. [Google Scholar] [CrossRef]
- Mativenga, M.; Jun, H.; Choe, Y.; Um, J.G.; Jang, J. Circular structure for high mechanical bending stability of a-IGZO TFTs. IEEE J. Electron Devices Soc. 2017, 5, 453–457. [Google Scholar] [CrossRef]
- Huo, W.; Mei, Z.; Sui, Y.; Han, Z.; Wang, T.; Liang, H.; Du, X. Flexible transparent InGaZnO thin-film transistors on muscovite mica. IEEE Trans. Electron Devices 2019, 66, 2198–2201. [Google Scholar] [CrossRef]
- Mativenga, M.; Ha, S.H.; Geng, D.; Kang, D.H.; Mruthyunjaya, R.K.; Heiler, G.N.; Tredwell, T.J.; Jang, J. Infinite output resistance of Corbino thin-film transistors with an amorphous-InGaZnO active layer for large-area AMOLED displays. IEEE Trans. Electron Devices 2014, 61, 3199–3205. [Google Scholar] [CrossRef]
- Joo, H.-J.; Shin, M.-G.; Kwon, S.-H.; Jeong, H.-Y.; Jeong, H.-S.; Kim, D.-H.; Jin, X.; Song, S.-H.; Kwon, H.-I. High-gain complementary inverter based on Corbino p-type tin monoxide and n-type indium-gallium-zinc oxide thin-film transistors. IEEE Electron Device Lett. 2019, 40, 1642–1645. [Google Scholar] [CrossRef]
- Geng, R.; Gong, Y. High performance active image sensor pixel design with circular structure oxide TFT. J. Semicond. 2019, 40, 022402. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Zhao, Y.; Sun, X.; Wen, Y.; Guo, Y.; Gao, X.; Di, C.a.; Yu, G.; Liu, Y. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 2012, 24, 436–440. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Luo, Y.; Wang, Y.; Hu, S.; Liu, C.; Liang, X.; Zhou, H.; Chen, J.; She, J. How Materials and Device Factors Determine the Performance: A Unified Solution for Transistors with Nontrivial Gates and Transistor–Diode Hybrid Integration. Adv. Sci. 2021, 9, 2104896. [Google Scholar] [CrossRef]
- Qiang, L.; Yao, R. A new definition of the threshold voltage for amorphous InGaZnO thin-film transistors. IEEE Trans. Electron Devices 2014, 61, 2394–2397. [Google Scholar] [CrossRef]
- Byun, Y.H.; Den Boer, W.; Yang, M.; Gu, T. An amorphous silicon TFT with annular-shaped channel and reduced gate-source capacitance. IEEE Trans. Electron Devices 1996, 43, 839–841. [Google Scholar] [CrossRef]
- Neamen, D.A. Semiconductor Physics and Devices: Basic Principles, 4th ed.; McGraw-Hill: New York, NY, USA, 2003; pp. 446–447. [Google Scholar]
Drain-Offset Corbino TFT | ||
SGOD TFT | DOGS TFT | |
V1 | ||
VS | 0 | |
ID in the linear region | ||
ID in the saturation region | ||
VDsat | ||
IDsat | ||
Source-Offset Corbino TFT | ||
DGOS TFT | SOGD TFT | |
V1 | VD | |
VS | ||
ID in the linear region | ||
ID in the saturation region | ||
VDsat | ||
IDsat |
Parameter | Value | Parameter | Value |
---|---|---|---|
1.0 | 1.5 × 1017 | ||
5.0 | 5.0 | ||
5.0 × 10−8 | 0.05 × 10−4 | ||
8.5 × 10−13 | 1.0 × 1017 | ||
0, 5, 10, 15, 20 | () | 175 | |
Inner electrode radius () | 75 |
Parameter | Value | Parameter | Value |
---|---|---|---|
5.5 × | 1.85 × | ||
0.015 | 0.3 | ||
5.5 × | 1.225 × | ||
0.22 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.; Liu, C.; Li, X.; Ou, H.; She, J.; Deng, S.; Chen, J. Characteristics of Offset Corbino Thin Film Transistor: A Physical Model. Electronics 2023, 12, 2195. https://doi.org/10.3390/electronics12102195
Kong J, Liu C, Li X, Ou H, She J, Deng S, Chen J. Characteristics of Offset Corbino Thin Film Transistor: A Physical Model. Electronics. 2023; 12(10):2195. https://doi.org/10.3390/electronics12102195
Chicago/Turabian StyleKong, Jiaquan, Chuan Liu, Xiaojie Li, Hai Ou, Juncong She, Shaozhi Deng, and Jun Chen. 2023. "Characteristics of Offset Corbino Thin Film Transistor: A Physical Model" Electronics 12, no. 10: 2195. https://doi.org/10.3390/electronics12102195
APA StyleKong, J., Liu, C., Li, X., Ou, H., She, J., Deng, S., & Chen, J. (2023). Characteristics of Offset Corbino Thin Film Transistor: A Physical Model. Electronics, 12(10), 2195. https://doi.org/10.3390/electronics12102195