A Novel 4H-SiC Double Trench MOSFET with Built-In MOS Channel Diode for Improved Switching Performance
Abstract
:1. Introduction
2. Device Structures and Proposed Fabrication Procedures
2.1. Device Structures and Optimization
2.2. Proposed Fabrication Procedures
3. Simulation Results and Discussions
3.1. Static Performances
3.2. Body Diode Characteristics
3.3. Dynamic Performances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamada, K.; Nagao, M.; Ajioka, M.; Kawai, F. SiC―Emerging Power Device Technology for Next-Generation Electrically Powered Environmentally Friendly Vehicles. IEEE Trans. Electron Devices 2015, 62, 278–285. [Google Scholar] [CrossRef]
- Baliga, B.J. Silicon Carbide Power Devices; World Scientific: Singapore, 2006; pp. 15–36. [Google Scholar]
- Millán, J.; Godignon, P.; Perpiñá, X.; Pérez-Tomás, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Bharti, D.; Islam, A. Optimization of SiC UMOSFET structure for improvement of breakdown voltage and ON-resistance. IEEE Trans. Electron Devices 2018, 65, 615–621. [Google Scholar] [CrossRef]
- Kagawa, Y.; Fujiwara, N.; Sugawara, K.; Tanaka, R.; Fukui, Y.; Yamamoto, Y.; Miura, N.; Imaizumi, M.; Nakata, S.; Yamakawa, S. 4H-SiC Trench MOSFET with Bottom Oxide Protection. Mater. Sci. Forum 2014, 778–780, 919–922. [Google Scholar] [CrossRef]
- Nakamura, T.; Nakano, Y.; Aketa, M.; Nakamura, R.; Mitani, S.; Sakairi, H.; Yokotsuji, Y. High performance SiC trench devices with ultra-low Ron. In Proceedings of the 2011 International Device Meeting, Washington, DC, USA, 5–7 December 2011. [Google Scholar]
- Zhang, W.; Zhang, L.; Mao, P.; Hou, Y. Characterization of SiC MOSFET switching performance. In Proceedings of the 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Xi’an, China, 16–18 May 2018. [Google Scholar]
- Kyogoku, S.; Tanaka, K.; Ariyoshi, K.; Iijima, R.; Kobayashi, Y.; Harada, S. Role of Trench Bottom Shielding Region on Switching Characteristics of 4H-SiC Double-Trench Mosfets. Mater. Sci. Forum 2018, 924, 748–751. [Google Scholar] [CrossRef]
- Morisette, D.T.; Cooper, J.A. Theoretical comparison of SiC PiN and Schottky diodes based on power dissipation considerations. IEEE Trans. Electron Devices 2002, 49, 1657–1664. [Google Scholar] [CrossRef]
- Tominaga, T.; Hino, S.; Mitsui, Y.; Nakashima, J.; Kawahara, K.; Tomohisa, S.; Miura, N. Superior Switching Characteristics of SiC-MOSFET Embedding SBD. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Shanghai, China, 19–23 May 2019. [Google Scholar]
- Yang, F.; Tian, L.; Shen, Z.; Yan, G.; Liu, X.; Zhao, W.; Wang, L.; Sun, G.; Wu, J.; Zhang, F.; et al. Effects of p-type Islands Configuration on the Electrical Characteristics of the 4H-SiC Trench MOSFETs with Integrated Schottky Barrier Diode. In Proceedings of the 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Wuhan, China, 25–27 August 2021. [Google Scholar]
- Tang, L.; Jiang, H.; Wei, J.; Hu, Q.; Zhong, X.; Qi, X. A comparative study of SiC MOSFETs with and without integrated SBD. Microelectron. J. 2022, 128, 105576. [Google Scholar] [CrossRef]
- Nicholls, J.; Dimitrijev, S.; Tanner, P.; Han, J. Description and verification of the fundamental current mechanisms in silicon carbide Schottky barrier diodes. Sci Rep. 2019, 9, 3754. [Google Scholar] [CrossRef] [Green Version]
- Na, J.; Kim, M.; Kim, K. High Performance 3.3 kV SiC MOSFET Structure with Built-In MOS-Chanel Diode. Energies 2022, 15, 6960. [Google Scholar] [CrossRef]
- Deng, X.; Xu, X.; Li, X.; Li, X.; When, Y.; Chen, W. A Novel SiC MOSFET Embedding Low Barrier Diode With Enhanced Third Quadrant and Switching Performance. IEEE Electron Device Lett. 2020, 41, 1472–1475. [Google Scholar] [CrossRef]
- Zhou, X.; Gong, H.; Jia, Y.; Hu, D.; Wu, Y.; Xia, T.; Pang, H.; Zhao, Y. SiC Planar MOSFETs With Built-In Reverse MOS-Channel Diode for Enhanced Performance. IEEE J. Electron Devices Soc. 2020, 8, 619–625. [Google Scholar] [CrossRef]
- Zhou, X.; Pang, H.; Jia, Y.; Hu, D.; Wu, Y.; Tang, Y.; Xia, T.; Gong, H.; Zhao, Y. SiC Double-Trench MOSFETs with Embedded MOS-Channel Diode. IEEE Trans. Electron Devices 2020, 67, 582–587. [Google Scholar] [CrossRef]
- Vudumula, P.; Kotamraju, S. Design and Optimization of 1.2-kV SiC Planar Inversion MOSFET Using split Dummy Gate Concept for High-Frequency Applications. IEEE Trans. Electron Devices 2019, 66, 5266–5271. [Google Scholar] [CrossRef]
- Yu, H.; Liang, S.; Liu, H.; Wang, J.; Shen, Z.J. Numerical Study of SiC MOSFET With Integrated n-/n-Type Poly-Si/SiC Heterojunction Freewheeling Diode. IEEE Trans. Electron Devices 2021, 68, 4571–4576. [Google Scholar] [CrossRef]
- Singh, R.; Hefner, A.R. Reliability of SiC MOS devices. Solid State Electron. 2004, 48, 1717–1720. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, S.; White, M.H.; Salemi, A.; Sheridan, D.; Agarwal, A.K. Time-dependent dielectric breakdown of commercial 1.2 kV 4H-SiC power MOSFETs. IEEE J. Electron Devices Soc. 2021, 9, 633–639. [Google Scholar] [CrossRef]
- Na, J.; Cheon, J.; Kim, K. High performance 4H-SiC MOSFET with deep source trench. Semicond. Sci. Technol. 2022, 37, 045004. [Google Scholar] [CrossRef]
- Han, K.; Baliga, B.J.; Sung, W. Split-Gate 1.2-kV 4H-SiC MOSFET: Analysis and Experimental Validation. IEEE Electron Device Lett. 2017, 38, 1437–1440. [Google Scholar] [CrossRef]
- Han, K.; Baliga, B.J.; Sung, W. A Novel 1.2 kV 4H-SiC Buffered-Gate (BG) MOSFET: Analysis and Experimental Results. IEEE Electron Device Lett. 2018, 39, 248–251. [Google Scholar] [CrossRef]
- Tyagi, R.; Ghezzo, M.; Chow, T.P.; Norton, J.F. An Isoplanar Isolation Technology for SiC Devices Using Local Oxidation. J. Electrochem. Soc. 1994, 141, 2188. [Google Scholar] [CrossRef]
- Mehregany, M.; Zorman, C.A. SiC MEMS: Opportunities and challenges for applications in harsh environments. Thin Solid Film. 1999, 355–356, 518–524. [Google Scholar] [CrossRef]
- Melloch, M.R.; Cooper, J.A. Fundamentals of SiC-based device processing. MRS Bull. 1997, 22, 42–47. [Google Scholar] [CrossRef]
- Yazdanfar, M.; Ivanov, I.G.; Pedersen, H.; Kordina, O.; Janzén, E. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates. J. Appl. Phys. 2013, 113, 223502. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Baliga, B.J.; Francois, M.M.A.; Maxwell, E.; Berliner, N.; Papageorge, M. 3.3 kV 4H-SiC Planar-Gate MOSFETs Manufactured using Gen-5 PRESCIETM Technology in a 4-inch Wafer Commercial Foundry. In Proceedings of the SoutheastCon 2021, Atlanta, GA, USA, 10–14 March 2021. [Google Scholar]
- Shen, H.-J.; Tang, Y.-C.; Peng, Z.-Y.; Deng, X.-C.; Bai, Y.; Wang, Y.-Y.; Li, C.-Z.; Liu, K.-A.; Liu, X.-Y. Fabrication and Characterization of 1700 V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors. Chin. Phys. 2015, 32, 127101. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Harada, S.; Ishimori, H.; Takasu, S.; Kojima, T.; Ariyoshi, K.; Sometani, M.; Senzaki, J.; Takei, M.; Tanaka, Y.; et al. 3.3kV-Class 4H-SiC UMOSFET by Double Trench with Tilt Angle Ion Implantation. Mater. Sci. Forum 2016, 858, 974–977. [Google Scholar] [CrossRef]
- Horiike, Y.; Ichihara, T.; Sakaue, H. Filling of Si oxide into a deep trench using digital CVD method. App. Surf. Sci. 1990, 46, 168–174. [Google Scholar] [CrossRef]
- Lu, J.; Liu, H.; Luo, J.; Wang, L.; Li, B.; Li, B.; Zhang, G.; Han, Z. Improved single-event hardness of trench power MOSFET with a widened split gate. In Proceedings of the 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, 19–23 September 2016. [Google Scholar]
- Goarin, P.; Koops, G.E.J.; Van Dalen, R.; Cam, C.L.; Saby, J. Split-gate resurf Oxide (RSO) MOSFETs for 25V applications with low gate-to-drain charge. In Proceedings of the 19th International Symposium on Power Semiconductor Devices & ICs, Jeju, Korea, 27–30 May 2007. [Google Scholar]
- Park, C.; Havanur, S.; Shibib, A.; Terrill, K. 60 V rating split gate trench MOSFETs having best-in-class specific resistance and figure-of-merit. In Proceedings of the 28th International Symposium on Power Semiconductor Devices & ICs, Prague, Czech Republic, 12–16 June 2016. [Google Scholar]
- Takaya, H.; Morimoto, J.; Hamada, K.; Yamamoto, T.; Sakakibara, J.; Watanabe, Y.; Soejima, N. A 4H-SiC trench MOSFET with thick bottom oxide for improving characteristics. In Proceedings of the 25th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Kanazawa, Japan, 26–30 May 2013. [Google Scholar]
- Synopsys, Inc. TCAD SentaurusTM Device User Guide; Synopsys INC.: Mountain View, CA, USA, 2017. [Google Scholar]
- Agarwal, A.K.; Siergiej, R.R.; Seshadri, S.; White, M.H.; McMullin, P.G.; Burk, A.A.; Rowland, L.B.; Brandt, C.D.; Hopkins, R.H. A critical look at the performance advantages and limitations of 4H-SiC power UMOSFET structures. In Proceedings of the 8th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Maui, HI, USA, 23 May 1996. [Google Scholar]
- Kimoto, T.; Yamada, K.; Niwa, H.; Suda, J. Promise and Challenges of High-Voltage SiC Bipolar Power Devices. Energies 2016, 9, 908. [Google Scholar] [CrossRef] [Green Version]
- Sochor, P.; Huemer, A.; Hell, M.; Elpelt, R. Understanding the Turn-off Behavior of SiC MOSFET Body Diodes in Fast Switching Applications. In Proceedings of the PCIM Europe Digital Days 2021, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 3–7 May 2021. [Google Scholar]
- Dalal, D.N.; Christensen, N.; Jorgensen, A.B.; Jorgensen, J.K.; Beczkowski, S.; Munknielsen, S.; Uhrenfeldt, C. Impact of power module parasitic capacitances on medium voltage sic mosfets switching transients. IEEE J. Emerg. Sel. Top. Power Electron 2019, 8, 298–310. [Google Scholar] [CrossRef]
- Yan, Q.; Yuan, X.; Geng, Y.; Charalambous, A.; Wu, X. Performance Evaluation of Split Output Converters with SiC MOSFETs and SiC Schottky Diodes. IEEE Trans. Power Electron 2017, 32, 406–422. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Li, J.; Zhao, S. Numerical analysis of reverse recovery characteristics of 4H-SiC p+–n−–n+ power diode with injection conditions. App. Phys. A 2015, 118, 1387–1398. [Google Scholar] [CrossRef]
- Han, K.; Baliga, B.J. Comparison of Four Cell Topologies for 1.2-kV Accumulation- and Inversion- Channel 4H-SiC MOSFETs: Analysis and Experimental Results. IEEE Trans. Electron Devices 2019, 66, 2321–2326. [Google Scholar] [CrossRef]
- Cheon, J.; Kim, K. Numerical Simulation Analysis of Switching Characteristics in the Source-Trench MOSFET’s. Electronics 2020, 9, 1895. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, Y.; Wang, X. An Improved Analytical Model for Crosstalk of SiC MOSFET in a Bridge-Arm Configuration. Energies 2021, 14, 683. [Google Scholar] [CrossRef]
Parameter | DT– | DTMCD– |
---|---|---|
Cell pitch [μm] | 4.8 | 4.8 |
Gate trench width [μm] | 1.2 | 1.2 |
Source trench width [μm] | 0.6 | 0.6 |
Source trench depth [μm] | 1.5 | 1.5 |
N-drift thickness [μm] | 10 | 10 |
Tox1 [nm] | 50 | 50 |
Tox2 [nm] | - | 210 |
Tox3 [nm] | - | 10 |
BPR width [μm] | 1.1 | 1.1 |
BPR depth [μm] | 5 | 5 |
LSG [μm] | - | 0.4 |
N-drift doping concentration [cm−3] | 7 × 1015 | 7 × 1015 |
CSL doping concentration [cm−3] | 2 × 1016 | 2 × 1016 |
P+ doping concentration [cm−3] | 2 × 1018 | 2 × 1018 |
P-base doping concentration [cm−3] | 2 × 1017 | 2 × 1017 |
N+ doping concentration [cm−3] | 1 × 1019 | 1 × 1019 |
Parameter | DT– | DTMCD– |
---|---|---|
Qrr (@LC = 60 µH) [µC·cm−2] | 2.33 | 1.62 |
Qrr (@LC = 30 µH) [µC·cm−2] | 3.17 | 1.47 |
Qrr (@LC = 20 µH) [µC·cm−2] | 3.79 | 1.51 |
Qrr (@LC = 12 µH) [µC·cm−2] | 4.78 | 1.4 |
Parameter | DT– | DTMCD– |
---|---|---|
BV [V] | 2137 | 2139 |
Ron-sp [mΩ·cm2] | 2.48 | 2.61 |
EMOX (@VDS = 1.2 kV) [MV/cm] | 1.41 | 1.14 |
VF (@ISD = 80 A·cm−2) [V] | 2.68 | 1.95 |
Ciss (@VDS = 1.2 kV) [nF·cm−2] | 36.3 | 21.1 |
Coss (@VDS = 1.2 kV) [pF·cm−2] | 839 | 839 |
Crss (@VDS = 1.2 kV) [pF·cm−2] | 19.9 | 2.1 |
H–FOM [pF·mΩ] | 49.4 | 5.5 |
Ton [ns] | 159 | 109 |
Toff [ns] | 917 | 412 |
Eon [mJ·cm−2] | 8.045 | 5.352 |
Eoff [mJ·cm−2] | 4.087 | 1.753 |
Etot [mJ·cm−2] | 12.132 | 7.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, J.; Kim, K. A Novel 4H-SiC Double Trench MOSFET with Built-In MOS Channel Diode for Improved Switching Performance. Electronics 2023, 12, 92. https://doi.org/10.3390/electronics12010092
Na J, Kim K. A Novel 4H-SiC Double Trench MOSFET with Built-In MOS Channel Diode for Improved Switching Performance. Electronics. 2023; 12(1):92. https://doi.org/10.3390/electronics12010092
Chicago/Turabian StyleNa, Jaeyeop, and Kwangsoo Kim. 2023. "A Novel 4H-SiC Double Trench MOSFET with Built-In MOS Channel Diode for Improved Switching Performance" Electronics 12, no. 1: 92. https://doi.org/10.3390/electronics12010092
APA StyleNa, J., & Kim, K. (2023). A Novel 4H-SiC Double Trench MOSFET with Built-In MOS Channel Diode for Improved Switching Performance. Electronics, 12(1), 92. https://doi.org/10.3390/electronics12010092