Applying Quantum Search Algorithm to Select Energy-Efficient Cluster Heads in Wireless Sensor Networks
Abstract
:1. Introduction
2. Related Work
3. System Model
3.1. Network Model
- ✓
- The sensor nodes and the base station are assumed to be stationary once they are deployed in the environment.
- ✓
- The base station is aware of each sensor node’s location.
- ✓
- A sensor node determines its neighbor node(s) within a specific distance.
- ✓
- All sensor nodes are homogeneous in terms of their energy and processing capabilities.
- ✓
- The basic component of intra- and inter-cluster communications is the single hop.
- ✓
- Communication is symmetric, and a sensor node can compute the approximate distance based on the received signal strength if transmission power is given.
- ✓
- Two nodes can communicate with each other via wireless link if they are within range.
- ✓
- The base station is not limited in terms of energy, memory, and computing power.
- ✓
- The sensor nodes are eligible to determine their own power levels via the standard system call [40].
3.2. Energy Model
4. Proposed Clustering Algorithm
4.1. Expected Number of Clusters
4.2. CH Selection Approach (Classical)
- Step 1: Within transmission range, find the neighbors of each node, s, which define their node degree, , as follows:
- Step 2: Evaluate the degree difference,, for every node.
- Step 3: Compute the sum of the distances of the member nodes within the transmission range, and find the average distance, :Average distance = .
- Step 4: Compute the residual energy to find the node with the highest energy level:
- Step 5: Calculate combined weight, , for each node s which might become a CH. The lowest weighted node will be chosen as CH:
An Illustrative Example
4.3. CH Selection Approach (Quantum)
An Illustrative Example of the Quantum Approach
5. Performance Evaluation
5.1. Classical Approach
5.2. Quantum Approach (IBM’s Quantum Simulator Results and Discussions)
6. Conclusions and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maraiya, K.; Kant, K.; Gupta, N. Application Based Study on Wireless Sensor Network. Int. J. Comput. Appl. 2011, 21, 9–15. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Zhang, L.; Xu, L.; Yang, S.; Lu, Y.; Zhao, D. WSNEAP: An Efficient Authentication Protocol For IIoT-Oriented Wireless Sensor Networks. Sensors 2022, 22, 7413. [Google Scholar] [CrossRef] [PubMed]
- Deverajan, G.; Ramakrishnan, S. Selfish Node Detection Based on Evidence by Trust Authority and Selfish Replica Allocation in DANET. Int. J. Inf. Commun. Technol. 2016, 9, 473. [Google Scholar] [CrossRef]
- Raghunathan, V.; Schurgers, C.; Park, S.; Srivastava, M.B. Energy-Aware Wireless Microsensor Networks. IEEE Signal Process. Mag. 2002, 19, 40–50. [Google Scholar] [CrossRef]
- Behera, T.M.; Samal, U.C.; Mohapatra, S.K.; Khan, M.S.; Appasani, B.; Bizon, N.; Thounthong, P. Energy-Efficient Routing Protocols for Wireless Sensor Networks: Architectures, Strategies, and Performance. Electronics 2022, 11, 2282. [Google Scholar] [CrossRef]
- Palanisamy, S.; Sennan, S.; Ramasubbareddy, S.; Deverajan, G. Communication Trust and Energy-Aware Routing Protocol for WSN Using D-S Theory. Int. J. Grid High Perform. Comput. 2021, 13, 24–36. [Google Scholar] [CrossRef]
- Jibreel, F.; Tuyishimire, E.; Daabo, M.I. An Enhanced Heterogeneous Gateway-Based Energy-Aware Multi-Hop Routing Protocol for Wireless Sensor Networks. Information 2022, 13, 166. [Google Scholar] [CrossRef]
- Schwieger, K.; Fettweis, G. Multi-Hop Transmission: Benefits and Deficits. In 2. Fachgesprach der GI/ITG Fachgruppe KuVS “Drahtlose Sensornetze” 26./27. Februar 2004 Universitat Karlsruhe (TH); Institute of Telematics, University of Karlsruhe: Karlsruhe, Germany, 2004. [Google Scholar]
- Wu, M. An Efficient Hole Recovery Method in Wireless Sensor Networks. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeongchang-gun, Republic of Korea, 13–16 February 2022; pp. 1399–1404. [Google Scholar] [CrossRef]
- Fedor, S.; Collier, M. On the Problem of Energy Efficiency of Multi-Hop vs One-Hop Routing in Wireless Sensor Networks. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007; Volume 1, pp. 380–385. [Google Scholar] [CrossRef]
- Sabet, M.; Naji, H.R. A Decentralized Energy Efficient Hierarchical Cluster-Based Routing Algorithm for Wireless Sensor Networks. AEU—Int. J. Electron. Commun. 2015, 69, 790–799. [Google Scholar] [CrossRef]
- Shagari, N.M.; Bin Salleh, R.; Ahmedy, I.; Idris, M.Y.I.; Murtaza, G.; Ali, U.; Modi, S. A Two-Step Clustering to Minimize Redundant Transmission in Wireless Sensor Network Using Sleep-Awake Mechanism. Wirel. Networks 2022, 28, 2077–2104. [Google Scholar] [CrossRef]
- Shakhov, V.; Koo, I. An Efficient Clustering Protocol for Cognitive Radio Sensor Networks. Electronics 2021, 10, 84. [Google Scholar] [CrossRef]
- Rawat, P.; Chauhan, S. Clustering Protocols in Wireless Sensor Network: A Survey, Classification, Issues, and Future Directions. Comput. Sci. Rev. 2021, 40, 100396. [Google Scholar] [CrossRef]
- Mohan, P.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Ulaganathan, S. Improved Metaheuristics-Based Clustering with Multihop Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 1618. [Google Scholar] [CrossRef]
- Han, B.; Ran, F.; Li, J.; Yan, L.; Shen, H.; Li, A. A Novel Adaptive Cluster Based Routing Protocol for Energy-Harvesting Wireless Sensor Networks. Sensors 2022, 22, 1564. [Google Scholar] [CrossRef]
- Krishnasamy, L.; Dhanaraj, R.K.; Ganesh Gopal, D.; Reddy Gadekallu, T.; Aboudaif, M.K.; Abouel Nasr, E. A Heuristic Angular Clustering Framework for Secured Statistical Data Aggregation in Sensor Networks. Sensors 2020, 20, 4937. [Google Scholar] [CrossRef]
- Gong, Y.; Lai, G. Low-Energy Clustering Protocol for Query-Based Wireless Sensor Networks. IEEE Sens. J. 2022, 22, 9135–9145. [Google Scholar] [CrossRef]
- Ye, M.; Li, C.; Chen, G.; Wu, J. An Energy Efficient Clustering Scheme in Wireless Sensor Networks. Ad-Hoc Sens. Wirel. Networks 2007, 3, 99–119. [Google Scholar]
- Lin, C.H.; Tsai, M.J. A Comment on “HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks”. IEEE Trans. Mob. Comput. 2006, 5, 1471–1472. [Google Scholar] [CrossRef]
- Bettstetter, C. On the Minimum Node Degree and Connectivity of a Wireless Multihop Network. In Proceedings of the 3rd ACM International Symposium on Mobile ad Hoc Networking & Computing, Lausanne, Switzerland, 9–11 June 2002; p. 80. [Google Scholar] [CrossRef]
- Li, X.-Y.; Wang, Y.; Wang, Y. Complexity of Data Collection, Aggregation, and Selection for Wireless Sensor Networks. IEEE Trans. Comput. 2011, 60, 386–399. [Google Scholar] [CrossRef]
- Roy, S.G.; Chakrabarti, A. Chapter 11—A Novel Graph Clustering Algorithm Based on Discrete-Time Quantum Random Walk. In Quantum Inspired Computational Intelligence; Bhattacharyya, S., Maulik, U., Dutta, P., Eds.; Morgan Kaufmann: Boston, MA, USA, 2017; pp. 361–389. ISBN 978-0-12-804409-4. [Google Scholar]
- Manuel, A.J.; Deverajan, G.G.; Patan, R.; Gandomi, A.H. Optimization of Routing-Based Clustering Approaches in Wireless Sensor Network: Review and Open Research Issues. Electronics 2020, 9, 1630. [Google Scholar] [CrossRef]
- Kleinberg, J.; Tardos, E. Algorithmic Design. In Kleinberg 2006 Algorithm; Pearson Education: Noida, India, 2006. [Google Scholar]
- Ushakov, A.V.; Vasilyev, I. A Parallel Heuristic for a K-Medoids Clustering Problem with Unfixed Number of Clusters. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 1116–1120. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Amgoth, T.; Pandey, H.M. Particle Swarm Optimization Based Energy Efficient Clustering and Sink Mobility in Heterogeneous Wireless Sensor Network. Ad Hoc Networks 2020, 106, 102237. [Google Scholar] [CrossRef]
- Choi, J.; Oh, S.; Kim, J. Energy-Efficient Cluster Head Selection via Quantum Approximate Optimization. Electronics 2020, 9, 1669. [Google Scholar] [CrossRef]
- Lee, E. Optimizing Quantum Circuit Parameters via SDP. arXiv 2022. [Google Scholar] [CrossRef]
- Villalba-Diez, J.; González-Marcos, A.; Ordieres-Meré, J.B. Improvement of Quantum Approximate Optimization Algorithm for Max–Cut Problems. Sensors 2022, 22, 244. [Google Scholar] [CrossRef]
- Giri, P.R.; Korepin, V.E. A Review on Quantum Search Algorithms; Springer: New York, NY, USA, 2017; Volume 16, ISBN 1112801717687. [Google Scholar] [CrossRef]
- Wright, J.; Tseng, T. Lecture 04: Grover’s Algorithm. In Quantum Computation and Information (15-859BB); Carnegie Mellon University: Pittsburgh, PA, USA, 2015; pp. 1–12. [Google Scholar]
- Panchi, L.; Shiyong, L. Grover Quantum Searching Algorithm Based on Weighted Targets. J. Syst. Eng. Electron. 2008, 19, 363–369. [Google Scholar] [CrossRef]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Lindsey, S.; Raghavendra, C.S. PEGASIS: Power-Efficient Gathering in Sensor Information Systems. IEEE Aerosp. Conf. Proc. 2002, 3, 1125–1130. [Google Scholar] [CrossRef]
- Li, C.; Ye, M.; Chen, G.; Wu, J. An Energy-Efficient Unequal Clustering Mechanism for Wireless Sensor Networks. In Proceedings of the International Conference on Mobile Adhoc and Sensor Systems Conference, Washington, DC, USA, 7 November 2005; Volume 2005, pp. 597–604. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Soni, S.K.; Nath, V. Energy Efficient Cluster Head Formation in Wireless Sensor Network. Microsyst. Technol. 2018, 24, 4775–4784. [Google Scholar] [CrossRef]
- Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, Philadelphia, PA, USA, 22–24 May 1996. [Google Scholar]
- Kim, H.S.; Andersen, M.P.; Chen, K.; Kumar, S.; Zhao, W.J.; Ma, K.; Culler, D.E. System Architecture Directions for Post-SoC/32-Bit Networked Sensors. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, Shenzhen, China, 4–7 November 2018; pp. 264–277. [Google Scholar] [CrossRef]
- Bettstetter, C. On the Connectivity of Wireless Multihop Networks with Homogeneous and Inhomogeneous Range Assignment. IEEE Veh. Technol. Conf. 2002, 56, 1706–1710. [Google Scholar] [CrossRef]
- Prasai, K.; Ghimire, S. Selection of Weighting Factors in Weighted Clustering Algorithm in MANET. Lect. Notes Eng. Comput. Sci. 2016, 2225, 101–107. [Google Scholar]
- Ezhov, A.A.; Nifanova, A.V.; Ventura, D. Quantum Associative Memory with Distributed Queries. Inf. Sci. 2000, 128, 271–293. [Google Scholar] [CrossRef]
- Bushnag, A.; Alessa, A.; Li, M.; Elleithy, K. Directed Diffusion Based on Weighted Grover’s Quantum Algorithm (DWGQ). In Proceedings of the 2015 Long Island Systems, Applications and Technology, Farmingdale, NY, USA, 1 May 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Biasse, J.-F.; Bonnetain, X.; Kirshanova, E.; Schrottenloher, A.; Song, F. Quantum Algorithms for Attacking Hardness Assumptions in Classical and Post-Quantum Cryptography. IET Inf. Secur. 2022. [Google Scholar] [CrossRef]
- Peelam, M.S.; Johari, R. Enhancing Security Using Quantum Computing (ESUQC). In Proceedings of the Machine Learning, Advances in Computing, Renewable Energy and Communication; Tomar, A., Malik, H., Kumar, P., Iqbal, A., Eds.; Springer: Singapore, 2022; pp. 227–235. [Google Scholar]
- Chamoli, A.; Bhandari, C.M. Grover’s Algorithm Based Multi-Qubit Secret Sharing Scheme. arXiv 2007, preprint. arXiv:0707.1042. [Google Scholar]
- Seo, Y.; Kang, Y.; Heo, J. Quantum Search Algorithm for Weighted Solutions. IEEE Access 2022, 10, 16209–16224. [Google Scholar] [CrossRef]
- Ieee, G.; Transceiver, Z.R.F. Cc2420: Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and ZigBeeTM Ready RF Transceiver; Texas Instruments: Dallas, TX, USA, 2022. [Google Scholar]
Parameters | Description |
---|---|
Energy required to run the transmitter or receiver | |
Amplifier’s power loss for a short distance, called free space | |
Amplifier’s power loss for a long distance, called multipath fading | |
Distance from a non-CH to a CH | |
Distance from a CH to the BS | |
Threshold transmission distance | |
Data aggregation |
Node ID | Current Node Degree, | Current and Expected Node Degree Difference,
( = 7) | Normalized Node Degree Difference, | Sum of All Member Node Distances | Average Distance | Energy Ratio | Total Weight |
---|---|---|---|---|---|---|---|
1 | 3 | 4 | 0.57 | 11 | 3.67 | 1 | 1.23 |
2 | 3 | 3 | 0.43 | 12 | 4 | 1 | 1.20 |
3 | 2 | 5 | 0.71 | 10 | 5 | 1 | 1.60 |
4 | 2 | 5 | 0.71 | 15 | 7.5 | 1 | 2.10 |
5 | 4 | 3 | 0.43 | 9 | 2.25 | 1 | 0.85 |
6 | 2 | 5 | 0.71 | 3 | 1.5 | 1 | 0.90 |
7 | 4 | 3 | 0.43 | 16 | 4 | 1 | 1.20 |
8 | 3 | 4 | 0.57 | 6 | 2 | 1 | 0.90 |
9 | 2 | 5 | 0.71 | 12 | 5 | 1 | 1.60 |
10 | 5 | 2 | 0.29 | 10 | 2 | 1 | 0.70 |
11 | 1 | 6 | 0.86 | 6 | 6 | 1 | 1.90 |
12 | 2 | 5 | 0.71 | 11 | 5.5 | 1 | 1.70 |
13 | 4 | 3 | 0.43 | 7 | 1.75 | 1 | 0.75 |
14 | 5 | 2 | 0.29 | 12 | 2.4 | 1 | 0.78 |
15 | 3 | 4 | 0.57 | 13 | 4.33 | 1 | 1.37 |
Node ID | Node State | Node Weight (Wi) | Inversion of Mean Value |
---|---|---|---|
1 | 1.23 | 1.27 | |
2 | 1.20 | 1.30 | |
3 | 1.60 | 0.90 | |
4 | 2.10 | 0.40 | |
5 | 0.85 | 1.65 | |
6 | 0.90 | 1.60 | |
7 | 1.20 | 1.30 | |
8 | 0.90 | 1.60 | |
9 | 1.60 | 0.90 | |
10 | 0.70 | 1.80 | |
11 | 1.90 | 0.60 | |
12 | 1.70 | 0.80 | |
13 | 0.75 | 1.75 | |
14 | 0.78 | 1.72 | |
15 | 1.37 | 1.13 | |
16 | Null | Null | |
Average weight | Wavg = 1.25 | = 1.25 |
Angular Frequency | Phase Angle | Iteration Steps Via Equation (28) | Iteration Steps Via Equation (33) |
---|---|---|---|
0.6908 | 0.3454 | 1.772 | 1.60 |
Network Area (A) | No. of Sensor Nodes (N) | Node Density m−2 | Expected Number of Clusters | Transmission Range m |
---|---|---|---|---|
200 m × 200 m | 500 | 0.0125 | 46 | 16.59 |
450 | 0.01125 | 42 | 17.40 | |
400 | 0.01 | 38 | 18.36 | |
350 | 0.00875 | 33 | 19.51 | |
300 | 0.0075 | 29 | 21 | |
250 | 0.00625 | 25 | 22.70 | |
200 | 0.005 | 20 | 25 | |
150 | 0.00375 | 16 | 29 | |
100 | 0.0025 | 11 | 34 | |
50 | 0.0013 | 6 | 47 |
Parameters | Values |
---|---|
Sensing Region | 200 m × 200 m |
N | 50 |
50 nJ/bit | |
10 pJ/bit/m2 | |
0.0013 pJ/bit/m4 | |
5 nJ/bit per signal | |
Data packet size (l) | 1 packet = 800 bits |
No. of Clusters | No. of Member Nodes in One Cluster | Average Distance from a Member Node to the CH (Assumption) | Transmission Energy (/Packet) from Member Nodes | Transmission Energy from One Cluster | Receiving Energy of the CH from One Cluster | Total Energy in the Cluster (Millijoules) | Energy Savings |
---|---|---|---|---|---|---|---|
1 | 50 | 90 | 104.8 | 5240 | 20,000 | 25.24 | 1% |
2 | 25 | 85 | 97.84 | 2445 | 10,000 | 12.45 | 51% |
3 | 16 | 60 | 73.8 | 1181 | 6400 | 7.58 | 70% |
4 | 12 | 50 | 60.6 | 720 | 4800 | 5.52 | 78% |
5 | 10 | 30 | 47.2 | 472 | 4000 | 4.47 | 82% |
6 | 8 | 20 | 43.2 | 346 | 3200 | 3.55 | 86% |
No. of Clusters | No. of Member Nodes in One Cluster | Non-CH Node (m−1) | Average Distance from CH to BS (m) (Assumption) | Transmission Energy of the CH per Cluster (Millijoules) | Energy Savings |
---|---|---|---|---|---|
1 | 50 | 49 | 20 | 110.01 | 1% |
2 | 25 | 24 | 25 | 27.51 | 75% |
3 | 16 | 15 | 30 | 11.28 | 89% |
4 | 12 | 11 | 35 | 6.35 | 94% |
5 | 10 | 9 | 40 | 4.43 | 96% |
6 | 8 | 7 | 45 | 2.85 | 97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, K.; Kim, M.-K. Applying Quantum Search Algorithm to Select Energy-Efficient Cluster Heads in Wireless Sensor Networks. Electronics 2023, 12, 63. https://doi.org/10.3390/electronics12010063
Roy K, Kim M-K. Applying Quantum Search Algorithm to Select Energy-Efficient Cluster Heads in Wireless Sensor Networks. Electronics. 2023; 12(1):63. https://doi.org/10.3390/electronics12010063
Chicago/Turabian StyleRoy, Kripanita, and Myung-Kyun Kim. 2023. "Applying Quantum Search Algorithm to Select Energy-Efficient Cluster Heads in Wireless Sensor Networks" Electronics 12, no. 1: 63. https://doi.org/10.3390/electronics12010063
APA StyleRoy, K., & Kim, M.-K. (2023). Applying Quantum Search Algorithm to Select Energy-Efficient Cluster Heads in Wireless Sensor Networks. Electronics, 12(1), 63. https://doi.org/10.3390/electronics12010063