Design and Integration of Millimeter-Wave 5G and WLAN Antennas in Perfect Full-Screen Display Smartphones
Abstract
:1. Introduction
2. Antenna Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.J.; Shin, D.H.; Park, S.O. Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device. IEEE Trans. Antennas Propag. 2016, 66, 923–932. [Google Scholar] [CrossRef]
- Kornprobst, J.; Wang, K.; Hamberger, G.; Eibert, T.F. A mm-wave patch antenna with broad bandwidth and a wide angular range. IEEE Trans. Antennas Propag. 2017, 65, 4293–4298. [Google Scholar] [CrossRef]
- Hussain, R.; Alreshaid, A.T.; Podilchak, S.K.; Sharawi, M.S. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microw. Antennas Propag. 2017, 11, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Stanley, M.; Huang, Y.; Wang, H.; Zhou, H.; Alieldin, A.; Joseph, S. A capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications. IEEE Access 2018, 6, 41942–41954. [Google Scholar] [CrossRef]
- Yu, B.; Yang, K.; Sim, C.Y.D.; Yang, G. A novel 28 GHz beam steering array for 5G mobile device with metallic casing application. IEEE Trans. Antennas Propag. 2018, 66, 462–466. [Google Scholar] [CrossRef]
- Khalily, M.; Tafazolli, R.; Xiao, P.; Kishk, A. Broadband mmwave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Trans. Antennas Propag. 2018, 66, 4641–4647. [Google Scholar] [CrossRef]
- Alkaraki, S.; Andy, A.S.; Gao, Y.; Tong, K.F.; Ying, Z.; Donnan, R.; Parini, C. Compact and low cost 3D-printed antennas metalized using spray-coating technology for 5G mm-wave communication systems. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2051–2055. [Google Scholar] [CrossRef]
- El-Halwagy, W.; Mirzavand, R.; Melzer, J.; Hossain, M.; Mousavi, P. Investigation of wideband substrate-integrated vertically-polarized electric dipole antenna and arrays for mm-Wave 5G mobile devices. IEEE Access 2018, 6, 2145–2157. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.Y.; Li, M.J.; Sun, D.; Guo, L.-X. A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 747–751. [Google Scholar] [CrossRef]
- Kurvinen, J.; Kähkönen, H.; Lehtovuori, A.; Ala-Laurinaho, J.; Viikari, V. Co-designed mm-wave and LTE handset antennas. IEEE Trans. Antennas Propag. 2019, 67, 1545–1553. [Google Scholar] [CrossRef]
- Aboualalaa, M.; Mansour, I.; Elsadek, H.; Abdel-Rahman, A.B.; Allam, A.; Abo-Zahhad, M.; Yoshitomi, K.; Pokharel, R.K. Independent Matching Dual-Band Compact Quarter-Wave Half-Slot Antenna for Millimeter-Wave Applications. IEEE Access 2019, 7, 130782–130790. [Google Scholar] [CrossRef]
- Ikram, M.; Abbas, E.A.; Nguyen-Trong, N.; Sayidmarie, K.H.; Abbosh, A. Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets. IEEE Trans. Antennas Propag. 2019, 67, 7225–7233. [Google Scholar] [CrossRef]
- Taheri, M.M.S.; Abdipour, A.; Zhang, S.; Pedersen, G.F. Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals. IEEE Trans. Veh. Technol. 2019, 8, 4042–4046. [Google Scholar] [CrossRef] [Green Version]
- Al Abbas, E.; Ikram, M.; Mobashsher, A.T.; Abbosh, A. MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications. IEEE Access 2019, 7, 181916–181923. [Google Scholar] [CrossRef]
- Ikram, M.; Nguyen-Trong, N.; Abbosh, A. Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices. IEEE Access 2019, 7, 159112–159118. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. A novel snowflake fractal antenna for dual-beam applications in 28 GHz band. IEEE Access 2020, 8, 19873–19879. [Google Scholar] [CrossRef]
- Moreno, R.M.; Ala-Laurinaho, J.; Khripkov, A.; Ilvonen, J.; Viikari, V. Dual-polarized mm-wave end-fire antenna for mobile devices. IEEE Trans. Antennas Propag. 2020, 68, 5924–5934. [Google Scholar] [CrossRef]
- Choi, J.; Park, J.; Youn, Y.; Hwang, W.; Seong, H.; Whang, Y.N.; Hong, W. Frequency-adjustable planar folded slot antenna using fully integrated multithrow function for 5G mobile devices at millimeter-wave spectrum. IEEE Trans. Microw. Theory Tech. 2020, 68, 1872–1881. [Google Scholar] [CrossRef]
- Rodriguez-Cano, R.; Zhang, S.; Zhao, K.; Pedersen, G.F. mm-Wave beam-steerable endfire array embedded in slotted metal-frame LTE antenna. IEEE Trans. Antennas Propag. 2020, 68, 3685–3694. [Google Scholar] [CrossRef]
- Alkaraki, S.; Gao, Y. mm-Wave low-cost 3D printed MIMO antennas with beam switching capabilities for 5G communication systems. IEEE Access 2020, 8, 32531–32541. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Al-Yasir, Y.I.A.; Jahanbakhsh Basherlou, H.; Abd-Alhameed, R.A.; Noras, J.M. Orthogonally dual-polarized MIMO antenna array with pattern diversity for use in 5G smartphones. IET Microw. Antennas Propag. 2020, 14, 457–467. [Google Scholar] [CrossRef]
- Deng, C.; Liu, D.; Yektakhah, B.; Sarabandi, K. Series-fed beam-steerable millimeter-wave antenna design with wide spatial coverage for 5G mobile terminals. IEEE Trans. Antennas Propag. 2020, 68, 3366–3376. [Google Scholar] [CrossRef]
- Park, Y.; Bae, J.; Kim, E.; Park, T. Maximizing responsiveness of touch sensing via charge multiplexing in touchscreen devices. IEEE Trans. Consum. Electron. 2010, 56, 1905–1910. [Google Scholar] [CrossRef]
- Liston, C.; Ellinger, C.R.; O’Connor, K. Characterization of optically transparent copper micro-wire transmission lines. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019. [Google Scholar]
- Kasabegoudar, V.G.; Upadhyay, D.S.; Vinoy, K.J. Design studies of ultra-wideband microstrip antennas with a small capacitive feed. Int. J. Antennas Propag. 2007, 2007, 067503. [Google Scholar] [CrossRef]
- Hu, H.N.; Lai, F.P.; Chen, Y.S. Dual-band dual-polarized scalable antenna subarray for compact millimeter-wave 5G base stations. IEEE Access 2020, 8, 129180–129192. [Google Scholar] [CrossRef]
- Hasan, M.N.; Bashir, S.; Chu, S. Dual band omnidirectional millimeter wave antenna for 5G communications. J. Electromagn. Waves Appl. 2019, 33, 1581–1590. [Google Scholar] [CrossRef]
- Sanjeeva Reddy, B.R.; Vakula, D. Compact zigzag-shaped-slit microstrip antenna with circular defected ground structure for wireless applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 678–681. [Google Scholar] [CrossRef]
- Karli, R.; Ammor, H. Rectangular patch antenna for dual-band RFID and WLAN applications. Wirel. Personal Commun. 2015, 83, 995–1007. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mulchandani, J.D.; Gupta, D.; Chaudhary, R.K. Triple-band metamaterial-inspired antenna using FDTD technique for WLAN/WiMAX applications. Int. J. RF Microw. Comput. Aid. Eng. 2015, 25, 688–695. [Google Scholar] [CrossRef]
- Rajeshkumar, V.; Raghavan, S. A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. Int. J. Electron. Commun. 2015, 69, 274–280. [Google Scholar]
- Malik, J.; Patnaik, A.; Kartikeyan, M.V. A compact dual-band antenna with omnidirectional radiation pattern. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 503–506. [Google Scholar] [CrossRef]
- Zehforoosh, Y.; Rezvani, M. A small quad-band monopole antenna with folded strip lines for WiMAX/WLAN and ITU applications. J. Microw. Optoelectron. Electromagn. Appl. 2017, 16, 1012–1018. [Google Scholar] [CrossRef] [Green Version]
- Haerinia, M.; Noghanian, S. A printed wearable dual-band antenna for wireless power transfer. Sensors 2019, 19, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G. Compact polyimide-based antennas for flexible displays. IEEE/OSA J. Disp. Technol. 2012, 8, 91–96. [Google Scholar] [CrossRef]
- Salonen, P.; Jaehoon, K.; Rahmat-Samii, Y. Dual-band E-shaped patch wearable textile antenna. In Proceedings of the IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Washington, DC, USA, 3–8 July 2005. [Google Scholar]
- Anagnostou, D.E.; Gheethan, A.A.; Amert, A.K.; Whites, K.W. A direct-write printed antenna on paper-based organic substrate for flexible displays and WLAN applications. IEEE/OSA J. Disp. Technol. 2010, 6, 558–564. [Google Scholar] [CrossRef]
- So, J.H.; Thelen, J.; Qusba, A.; Hayes, G.J.; Lazzi, G.; Dickey, M.D. Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 2009, 19, 3632–3637. [Google Scholar] [CrossRef]
- Durgun, A.C.; Reese, M.S.; Balanis, C.A.; Birtcher, C.R.; Allee, D.R.; Venugopal, S. Flexible bow-tie antennas. In Proceedings of the 2010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting—Leading the Wave, AP-S/URSI 2010, Toronto, ON, Canada, 11–17 July 2010. [Google Scholar]
No. | Impedance Bandwidth (GHz) | Number of Elements | Isolation (dB) | Peak Gain (dBi) | Proportion of Metallic Area on Screen (%) |
---|---|---|---|---|---|
[1] | 26.5–29.4 | 8 | 20.0 | 14.0 | 0 |
[2] | 34.2–38.8 | 1 | N.A. | 5.7 | 0 |
[3] | 26.0–28.4 | 8 | N.A. | 8.2 | 0 |
[4] | 23.2–29.8 | 12 | 16.0 | 16.5 | 0 |
[5] | 27.5–30.0 | 8 | 17.0 | 15.6 | 0 |
[6] | 25.6–29.6 | 16 | 19.0 | 19.9 | 0 |
[7] | 27.3–29.8 | 1 | N.A. | 12.4 | 0 |
[7] | 26.9–30.6 | 1 | N.A. | 7.6 | 0 |
[8] | 27.0–29.4 | 4 | N.A. | 12.6 | 0 |
[9] | 27.2–28.5 | 2 | 24.0 | 9.0 | 0 |
[10] | 25.0–30.0 | 4 | N.A. | 5.0 | 0 |
[11] | 27.0–30.8 | 1 | N.A. | 4.9 | 0 |
[12] | 26.9–28.4 | 4 | N.A. | 11.5 | 0 |
[13] | 22.0–31.0 | 4 | 13.0 | 9.5 | 0 |
[14] | 26.7–33.3 | 1 | N.A. | 5.1 | 75 |
[14] | 37.0–40.0 | 1 | N.A. | 7.0 | 75 |
[15] | 25.0–30.0 | 4 | 21.5 | 14.0 | 0 |
[16] | 25.4–29.0 | 4 | N.A | 10.1 | 0 |
[17] | 26.5–30.5 | 3 | 15.0 | 6.0 | 0 |
[18] | 27.6–28.3 | 4 | N.A | 6.4 | 0 |
[19] | 22.0–28.0 | 2 | 25.0 | 8.0 | 0 |
[20] | 26.1–31.0 | 12 | 26.0 | N.A. | 0 |
[21] | 23.5–32.0 | 8 | 18.0 | 11.0 | 86 |
[22] | 25.0–31.0 | 10 | N.A. | 11.7 | 0 |
This study | 26.5–32.0 | 12 | 22.3 | 16.7 | 100 |
This study | 35.2–42.0 | 8 | 20.0 | 16.4 | 100 |
This study | 2.41–2.47 | 1 | N.A. | 4.3 | 100 |
No. | Dimensions (mm2) | Total Area Occupied by the Antenna (mm2) |
---|---|---|
[28] | 40 × 28 | 1120 |
[29] | 28.2 × 36.7 | 1034.97 |
[30] | 30 × 30 | 900 |
[31] | 27 × 25 | 675 |
[32] | 10 × 40 | 400 |
[33] | 15 × 20 | 300 |
[34] | 15 × 14 | 210 |
[35] | 26.5 × 25 | 662.5 |
[36] | 180 × 150 | 27,000 |
[37] | 46 × 35 | 1610 |
[38] | 54 × 10 | 540 |
[39] | 39 × 25 | 975 |
This study | 5.8 × 16.6 | 96.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, F.-P.; Mi, S.-Y.; Chen, Y.-S. Design and Integration of Millimeter-Wave 5G and WLAN Antennas in Perfect Full-Screen Display Smartphones. Electronics 2022, 11, 957. https://doi.org/10.3390/electronics11060957
Lai F-P, Mi S-Y, Chen Y-S. Design and Integration of Millimeter-Wave 5G and WLAN Antennas in Perfect Full-Screen Display Smartphones. Electronics. 2022; 11(6):957. https://doi.org/10.3390/electronics11060957
Chicago/Turabian StyleLai, Fei-Peng, Shih-Yuan Mi, and Yen-Sheng Chen. 2022. "Design and Integration of Millimeter-Wave 5G and WLAN Antennas in Perfect Full-Screen Display Smartphones" Electronics 11, no. 6: 957. https://doi.org/10.3390/electronics11060957
APA StyleLai, F.-P., Mi, S.-Y., & Chen, Y.-S. (2022). Design and Integration of Millimeter-Wave 5G and WLAN Antennas in Perfect Full-Screen Display Smartphones. Electronics, 11(6), 957. https://doi.org/10.3390/electronics11060957