A Novel Nonlinear Equalizer for Probabilistic Shaping 64-QAM Based on Constellation Segmentation and Support Vector Machine
Abstract
:1. Introduction
2. Principle of the Proposed Scheme
2.1. Principle of PS
2.2. Principle of M-ary SVM
2.3. Principle of CS M-ary SVM
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Li, F.; Yu, J.; Cao, Z.; Zhang, J.; Chen, M.; Li, X. Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT Using IM/DD for 2-km Optical Interconnect. J. Light. Technol. 2017, 35, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Schulte, P.; Steiner, F.; Bocherer, G. Four dimensional probabilistic shaping for fiber-optic communication. In Proceedings of the Signal Processing in Photonic Communications 2017, New Orleans, LO, USA, 24–27 July 2017. [Google Scholar]
- Shi, J.; Zhang, J.; Li, X.; Chi, N.; Zhang, Y.; Zhang, Q.; Yu, J. Improved Performance of high-order QAM OFDM Based on Probabilistically Shaping in the Datacom. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; p. W4G.6. [Google Scholar]
- Xiao, Q.; Chen, Y.; Lin, S.; He, H.; Wu, X.; You, J.; Zeng, Y.; Zhou, L.; Dong, Z. DFT-Spread DMT-WDM-PON Employing LDPC-Coded Probabilistic Shaping 16 QAM. J. Light. Technol. 2020, 38, 714–722. [Google Scholar] [CrossRef]
- Wang, F.; Yao, H.; Zhang, Q.; Wang, J.; Gao, R.; Guo, D.; Guizani, M. Dynamic Distributed Multi-Path Aided Load Balancing for Optical Data Center Networks. IEEE Trans. Netw. Serv. Manag. 2021. [Google Scholar] [CrossRef]
- Olsson, S.L.; Cho, J.; Chandrasekhar, S.; Chen, X.; Burrows, E.C.; Winzer, P.J. Record-High 17.3-bit/s/Hz Spectral Efficiency Transmission over 50 km Using Probabilistically Shaped PDM 4096-QAM. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; p. Th4C.5. [Google Scholar]
- Matsumine, T.; Koike-Akino, T.; Millar, D.S.; Kojima, K.; Parsons, K. Polar-Coded Modulation for Joint Channel Coding and Probabilistic Shaping. In Proceedings of the Optical Fiber Communication Conference 2019, San Diego, CA, USA, 3–7 March 2019; p. M4B.2. [Google Scholar]
- Fallahpour, A.; Alishahi, F.; Minoofar, A.; Zou, K.; Almaiman, A.; Liao, P.; Zhou, H.; Tur, M.; Willner, A.E. 16-QAM probabilistic constellation shaping by adaptively modifying the distribution of transmitted symbols based on errors at the receiver. Opt. Lett. 2020, 45, 5283–5286. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Tian, Q.; Xin, X.; Wang, Y.; Wang, X.; Gao, R.; Guo, D.; Wang, F.; Tian, F.; Zhang, Q. Probabilistic shaping and forward error correction scheme employing uneven segmentation mapping for data center optical communication. Opt. Express 2021, 29, 6209–6219. [Google Scholar] [CrossRef] [PubMed]
- Parahyba, V.; Reis, J.; Ranzini, S.; Schneider, E.; Rosa, E.; Simões, F.; Diniz, J.; Carvalho, L.; Filho, E.; Oliveira, J.; et al. Performance against implementation of digital backpropagation for high-speed coherent optical systems. Electron. Lett. 2015, 51, 1094–1096. [Google Scholar] [CrossRef]
- Martins, C.S.; Bertignono, L.; Nespola, A.; Carena, A.; Guiomar, F.P.; Pinto, A.N. Low-Complexity Time-Domain DBP Based on Random Step-Size and Partitioned Quantization. J. Light. Technol. 2018, 36, 2888–2895. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, W.; Gao, M.; Shen, G. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system. Opt. Express 2017, 25, 27570–27580. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Wang, X.; Tian, F.; Xin, X.; Zhang, Q.; Tian, Q.; Yang, L. Mixture-of-Gaussian clustering-based decision technique for a coherent optical communication system. Appl. Opt. 2019, 58, 9201–9207. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, M.; Cai, Z.; Cui, Y.; Li, Z.; Han, H.; Fu, M.; Luo, B. Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning. Opt. Commun. 2016, 369, 199–208. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, M.; Chen, W.; Shen, G. Non-Data-Aided k-Nearest Neighbors Technique for Optical Fiber Nonlinearity Mitigation. J. Light. Technol. 2018, 36, 3564–3572. [Google Scholar] [CrossRef]
- Li, M.; Yu, S.; Yang, J.; Chen, Z.; Han, Y.; Gu, W. Nonparameter Nonlinear Phase Noise Mitigation by Using M-ary Support Vector Machine for Coherent Optical Systems. IEEE Photonics J. 2013, 5, 7800312. [Google Scholar] [CrossRef]
- Giacoumidis, E.; Mhatli, S.; Stephens, M.F.C.; Tsokanos, A.; Wei, J.; McCarthy, M.E.; Doran, N.J.; Ellis, A.D. Reduction of Nonlinear Intersubcarrier Intermixing in Coherent Optical OFDM by a Fast Newton-Based Support Vector Machine Nonlinear Equalizer. J. Light. Technol. 2017, 35, 2391–2397. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Du, J.; Sun, L.; Zhang, W.; Xu, K.; Chen, X.; Reed, G.T.; He, Z. Nonlinear Distortion Mitigation by Machine Learning of SVM Classification for PAM-4 and PAM-8 Modulated Optical Interconnection. J. Light. Technol. 2018, 36, 650–657. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Xin, X.; Gao, R.; Tian, Q.; Tian, F.; Wang, C.; Pan, X.; Wang, Y.; Yang, L. Robust weighted K-means clustering algorithm for a probabilistic-shaped 64QAM coherent optical communication system. Opt. Express 2019, 27, 37601–37613. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Zhang, T.; Giacoumidis, E.; Ali, A.A.; Tan, M.; Harper, P.; Barry, L.P.; Ellis, A.D. Coupled Transceiver-Fiber Nonlinearity Compensation Based on Machine Learning for Probabilistic Shaping System. J. Light. Technol. 2021, 39, 388–399. [Google Scholar] [CrossRef]
- Christopher, M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kre, H.G. Pairwise classification and support vector machines. In Advances in Kernel Methods; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Giacoumidis, E.; Mhatli, S.; Nguyen, T.; Le, S.T.; Aldaya, I.; McCarthy, M.E.; Ellis, A.D.; Eggleton, B.J. Comparison of DSP-based nonlinear equalizers for intra-channel nonlinearity compensation in coherent optical OFDM. Opt. Lett. 2016, 41, 2509–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, P.; Böcherer, G. Constant Composition Distribution Matching. IEEE Trans. Inf. Theory 2016, 62, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Schmalen, L. Probabilistic Constellation Shaping: Challenges and Opportunities for Forward Error Correction. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; p. M3C.1. [Google Scholar]
- Zhou, H.; Li, Y.; Lu, D.; Yue, L.; Gao, C.; Liu, Y.; Hao, R.; Zhao, Z.; Li, W.; Qiu, J.; et al. Joint clock recovery and feed-forward equalization for PAM4 transmission. Opt. Express 2019, 27, 11385–11395. [Google Scholar] [CrossRef]
The Number of Constellation Points | The Amplitude of Each Constellation Point | The Probability of Each Constellation Point |
---|---|---|
4 | 0.058564 | |
8 | 0.039446 | |
4 | 0.026569 | |
8 | 0.017666 | |
8 | 0.011899 | |
12 | 0.005324 | |
8 | 0.003586 | |
8 | 0.001606 | |
4 | 0.000484 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, Y.; Wang, X.; Li, C.; Huang, X.; Zhang, Q. A Novel Nonlinear Equalizer for Probabilistic Shaping 64-QAM Based on Constellation Segmentation and Support Vector Machine. Electronics 2022, 11, 671. https://doi.org/10.3390/electronics11050671
Xu H, Wang Y, Wang X, Li C, Huang X, Zhang Q. A Novel Nonlinear Equalizer for Probabilistic Shaping 64-QAM Based on Constellation Segmentation and Support Vector Machine. Electronics. 2022; 11(5):671. https://doi.org/10.3390/electronics11050671
Chicago/Turabian StyleXu, Hui, Yongjun Wang, Xishuo Wang, Chao Li, Xingyuan Huang, and Qi Zhang. 2022. "A Novel Nonlinear Equalizer for Probabilistic Shaping 64-QAM Based on Constellation Segmentation and Support Vector Machine" Electronics 11, no. 5: 671. https://doi.org/10.3390/electronics11050671
APA StyleXu, H., Wang, Y., Wang, X., Li, C., Huang, X., & Zhang, Q. (2022). A Novel Nonlinear Equalizer for Probabilistic Shaping 64-QAM Based on Constellation Segmentation and Support Vector Machine. Electronics, 11(5), 671. https://doi.org/10.3390/electronics11050671