Low-Voltage Low-Power Filters with Independent ω0 and Q Tuning for Electronic Cochlea Applications
Abstract
:1. Introduction
2. Proposed Filter Solution
2.1. Principle of Operation
2.2. Sensitivity
2.3. Noise
2.4. Transistor-Level Circuit
3. Filter Bank
4. Discussion
5. Comparison to the State of the Art and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
T = 0 °C | T = 27 °C | T = 50 °C | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kQ | TM | WP | WS | WO | WZ | TM | WP | WS | WO | WZ | TM | WP | WS | WO | WZ |
fpeak (Hz) | |||||||||||||||
1/50 | 1360 | 1395 | 1313 | 1326 | 1380 | 1281 | 1312 | 1246 | 1259 | 1298 | 1211 | 1241 | 1176 | 1187 | 1228 |
1/10 | 1357 | 1393 | 1309 | 1323 | 1378 | 1279 | 1310 | 1244 | 1256 | 1296 | 1208 | 1239 | 1173 | 1185 | 1226 |
1/5 | 1349 | 1385 | 1299 | 1312 | 1370 | 1271 | 1302 | 1235 | 1247 | 1288 | 1200 | 1231 | 1165 | 1177 | 1218 |
1/2 | 1274 | 1309 | 1221 | 1233 | 1295 | 1201 | 1231 | 1165 | 1177 | 1218 | 1134 | 1163 | 1099 | 1109 | 1152 |
peak gain (V/V) | |||||||||||||||
1/50 | 43.47 | 69.35 | 18.34 | 18.08 | 68.44 | 70.29 | 79.3 | 43.9 | 43.59 | 77.25 | 76.53 | 53.82 | 66.47 | 66.69 | 51.48 |
1/10 | 10.13 | 11.11 | 7.658 | 7.62 | 11.04 | 11.11 | 11.35 | 10.11 | 10.11 | 11.24 | 11.24 | 10.65 | 10.93 | 10.95 | 10.49 |
1/5 | 5.15 | 5.4 | 4.421 | 4.41 | 5.367 | 5.39 | 5.456 | 5.137 | 5.14 | 5.413 | 5.42 | 5.296 | 5.325 | 5.34 | 5.238 |
1/2 | 2.03 | 2.067 | 1.907 | 1.91 | 2.055 | 2.06 | 2.076 | 2.023 | 2.03 | 2.061 | 2.07 | 2.056 | 2.047 | 2.05 | 2.039 |
DC gain (V/V) | |||||||||||||||
1/50 | 0.9988 | 0.9992 | 0.998 | 0.9989 | 0.9956 | 0.9991 | 0.9999 | 0.9985 | 0.9996 | 0.9957 | 0.9997 | 1.003 | 0.9987 | 0.9999 | 0.9979 |
1/10 | 0.9979 | 0.9986 | 0.9961 | 0.9970 | 0.995 | 0.9984 | 0.9994 | 0.9976 | 0.9987 | 0.9951 | 0.9991 | 1.002 | 0.998 | 0.9992 | 0.9971 |
1/5 | 0.9968 | 0.9978 | 0.9938 | 0.9947 | 0.9942 | 0.9977 | 0.9986 | 0.9965 | 0.9976 | 0.9943 | 0.9983 | 1.001 | 0.9972 | 0.9984 | 0.996 |
1/2 | 0.9932 | 0.9953 | 0.9862 | 0.9871 | 0.9917 | 0.9951 | 0.9962 | 0.9929 | 0.9940 | 0.9919 | 0.9958 | 0.9974 | 0.9945 | 0.9957 | 0.9925 |
T = 0 °C | T = 27 °C | T = 50 °C | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kQ | TM | WP | WS | WO | WZ | TM | WP | WS | WO | WZ | TM | WP | WS | WO | WZ |
fpeak (Hz) | |||||||||||||||
1/50 | 1354 | 1392 | 1294 | 1307 | 1377 | 1279 | 1311 | 1243 | 1255 | 1297 | 1211 | 1241 | 1177 | 1189 | 1228 |
1/10 | 1351 | 1390 | 1289 | 1302 | 1375 | 1277 | 1309 | 1240 | 1252 | 1295 | 1209 | 1239 | 1174 | 1186 | 1226 |
1/5 | 1342 | 1381 | 1277 | 1290 | 1366 | 1269 | 1300 | 1231 | 1244 | 1287 | 1201 | 1231 | 1166 | 1178 | 1219 |
1/2 | 1266 | 1306 | 1194 | 1206 | 1291 | 1199 | 1230 | 1160 | 1171 | 1217 | 1135 | 1164 | 1100 | 1111 | 1152 |
peak gain (V/V) | |||||||||||||||
1/50 | 32.3 | 58.25 | 11.35 | 11.15 | 57.58 | 58.79 | 72.47 | 32.57 | 32.22 | 70.68 | 69.53 | 53.11 | 54.71 | 54.61 | 50.81 |
1/10 | 9.364 | 10.78 | 6.081 | 6.03 | 10.69 | 10.77 | 11.19 | 9.356 | 9.34 | 11.06 | 11.08 | 10.62 | 10.56 | 10.58 | 10.44 |
1/5 | 4.945 | 5.318 | 3.842 | 3.83 | 5.275 | 5.311 | 5.419 | 4.933 | 4.94 | 5.363 | 5.38 | 5.288 | 5.238 | 5.25 | 5.216 |
1/2 | 1.996 | 2.055 | 1.792 | 1.79 | 2.039 | 2.052 | 2.07 | 1.991 | 1.99 | 2.05 | 2.061 | 2.055 | 2.035 | 2.04 | 2.031 |
DC gain (V/V) | |||||||||||||||
1/50 | 0.9984 | 0.9989 | 0.9967 | 0.9978 | 0.994 | 0.9987 | 0.9996 | 0.9980 | 0.9994 | 0.9937 | 0.9993 | 1.002 | 0.9982 | 0.9998 | 0.9955 |
1/10 | 0.9973 | 0.9982 | 0.9938 | 0.9949 | 0.9933 | 0.998 | 0.999 | 0.9969 | 0.9983 | 0.9931 | 0.9987 | 1.001 | 0.9975 | 0.9990 | 0.9946 |
1/5 | 0.9959 | 0.9974 | 0.9901 | 0.9911 | 0.9924 | 0.9971 | 0.9982 | 0.9955 | 0.9969 | 0.9923 | 0.9979 | 1 | 0.9966 | 0.9981 | 0.9936 |
1/2 | 0.9913 | 0.9945 | 0.9782 | 0.9792 | 0.9895 | 0.9942 | 0.9957 | 0.9910 | 0.9923 | 0.9897 | 0.9952 | 0.9969 | 0.9935 | 0.9950 | 0.9901 |
T = 0 °C | T = 27 °C | T = 50 °C | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kQ | TM | WP | WS | WO | WZ | TM | WP | WS | WO | WZ | TM | WP | WS | WO | WZ |
fpeak (Hz) | |||||||||||||||
1/50 | 1364 | 1397 | 1323 | 1338 | 1383 | 1282 | 1313 | 1247 | 1260 | 1299 | 1209 | 1240 | 1172 | 1184 | 1227 |
1/10 | 1361 | 1395 | 1320 | 1335 | 1380 | 1279 | 1310 | 1245 | 1258 | 1297 | 1206 | 1238 | 1169 | 1181 | 1226 |
1/5 | 1353 | 1387 | 1311 | 1324 | 1372 | 1272 | 1302 | 1237 | 1249 | 1289 | 1199 | 1230 | 1161 | 1173 | 1218 |
1/2 | 1278 | 1312 | 1235 | 1248 | 1298 | 1202 | 1232 | 1167 | 1179 | 1219 | 1132 | 1162 | 1095 | 1106 | 1151 |
peak gain (V/V) | |||||||||||||||
1/50 | 55.63 | 79.94 | 27.41 | 27.11 | 78.8 | 81.4 | 84.94 | 56.47 | 56.28 | 82.8 | 82.45 | 53.81 | 78.38 | 78.87 | 51.44 |
1/10 | 10.68 | 11.36 | 8.897 | 8.87 | 11.3 | 11.36 | 11.46 | 10.66 | 10.67 | 11.37 | 11.35 | 10.65 | 11.18 | 11.21 | 10.51 |
1/5 | 5.294 | 5.459 | 4.81 | 4.81 | 5.433 | 5.451 | 5.483 | 5.273 | 5.28 | 5.448 | 5.441 | 5.296 | 5.381 | 5.39 | 5.247 |
1/2 | 2.051 | 2.076 | 1.974 | 1.98 | 2.067 | 2.072 | 2.08 | 2.043 | 2.05 | 2.069 | 2.069 | 2.057 | 2.053 | 2.06 | 2.043 |
DC gain (V/V) | |||||||||||||||
1/50 | 0.9991 | 0.9995 | 0.9986 | 0.9993 | 0.9968 | 0.9993 | 1 | 0.9988 | 0.9993 | 0.997 | 1 | 1.003 | 0.9990 | 1.0000 | 0.9997 |
1/10 | 0.9983 | 0.9989 | 0.9973 | 0.9980 | 0.9962 | 0.9988 | 0.9996 | 0.9981 | 0.9980 | 0.9965 | 0.9995 | 1.002 | 0.9985 | 0.9994 | 0.9988 |
1/5 | 0.9974 | 0.9982 | 0.9956 | 0.9964 | 0.9955 | 0.9981 | 0.9989 | 0.9972 | 0.9964 | 0.9958 | 0.9987 | 1.001 | 0.9977 | 0.9987 | 0.9977 |
1/2 | 0.9944 | 0.9958 | 0.9903 | 0.9911 | 0.9931 | 0.9957 | 0.9966 | 0.9942 | 0.9911 | 0.9934 | 0.9963 | 0.9978 | 0.9953 | 0.9962 | 0.9942 |
References
- Russo, M.; Stella, M.; Sikora, M.; Pekić, V. Robust Cochlear-Model-Based Speech Recognition. Computers 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Raychowdhury, A.; Tokunaga, C.; Beltman, W.; Deisher, M.; Tschanz, J.W.; De, V. A 2.3 nJ/frame voice activity detector-based audio front-end for context-aware system-on-chip applications in 32-nm CMOS. IEEE J. Solid-State Circuits 2013, 48, 1963–1969. [Google Scholar] [CrossRef]
- Price, M.; Glass, J.; Chandrakasan, A.P. A 6 mW, 5000-word real-time speech recognizer using WFST models. IEEE J. Solid-State Circuits 2015, 50, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Lyon, R.F.; Drakakis, E.M. A 6 μW per channel analog biomimetic cochlear implant processor filterbank architecture with across channels AGC. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Harczos, T.; Chilian, A.; Husar, P. Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: The SAM coding strategy. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Yip, M.; Jin, R.; Nakajima, H.H.; Stankovic, K.M.; Chandrakasan, A.P. A Fully-Implantable Cochlear Implant SoC With Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation. IEEE J. Solid-State Circuits 2015, 50, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Robles, L.; Ruggero, M.A.; Rich, N.C. Mössbauer measurements of the mechanical response to single-tone and two-tone stimuli at the base of of the chinchilla cochlea. In Peripheral Auditory Mechanisms; Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T., Tubis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 121–128. [Google Scholar] [CrossRef]
- Ruggero, M.A.; Narayan, S.S.; Temchin, A.N.; Recio, A. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: Comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proc. Natl. Acad. Sci. USA 2000, 97, 11744–11750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plack, C.J. The Sense of Hearing; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2005; ISBN 0805848843/9780805848847. [Google Scholar]
- Hamilton, T.J.; Jin, C.; van Schaik, A.; Tapson, J. An active 2-D silicon cochlea. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Boahen, K. A silicon cochlea with active coupling. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 444–455. [Google Scholar] [CrossRef]
- Lyon, R.F.; Mead, C. An analog electronic cochlea. IEEE Trans. Acoust., Speech Signal Process. 1988, 36, 1119–1134. [Google Scholar] [CrossRef] [Green Version]
- Watts, L.; Kerns, D.A.; Lyon, R.F.; Mead, C.A. Improved implementation of the silicon cochlea. IEEE J. Solid-State Circuits 1992, 27, 692–700. [Google Scholar] [CrossRef]
- Sarpeshkar, R.; Lyon, R.F.; Mead, C.A. An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control. In Proceedings of the 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, Atlanta, GA, USA, 15 May 1996; Volume 3, pp. 292–296. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-C.; van Schaik, A.; Minch, B.A.; Delbruck, T. Asynchronous binaural spatial audition sensor with 2 × 64 × 4 channel output. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Koickal, T.J.; Hamilton, A.; Cheung, R.; Smith, L.S. A bio-realistic analog CMOS cochlea filter with high tunability and ultra-steep roll-off. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Sarpeshkar, R.; Salthouse, C.; Sit, J.-J.; Baker, M.W.; Zhak, S.M.; Lu, T.K.-T.; Turicchia, L.; Balster, S. An ultra-low-power programmable analog bionic ear processor. IEEE Trans. Biomed. Eng. 2005, 52, 711–727. [Google Scholar] [CrossRef]
- Yang, M.; Chien, C.-H.; Delbruck, T.; Liu, S.-C. A 0.5 V 55 μW 64 × 2 Channel Binaural Silicon Cochlea for Event-Driven Stereo-Audio Sensing. IEEE J. Solid-State Circuits 2016, 51, 2554–2569. [Google Scholar] [CrossRef]
- Jendernalik, W.; Jakusz, J.; Blakiewicz, G. Ladder-Based Synthesis and Design of Low-Frequency Buffer-Based CMOS Filters. Electronics 2021, 10, 2931. [Google Scholar] [CrossRef]
- Grech, I.; Micallef, J.; Azzopardi, G.; Debono, C.J. A 0.9 V wide-input-range bulk-input CMOS OTA for GM-C filters. In Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003, Sharjah, United Arab Emirates, 14–17 December 2003; Volume 2, pp. 818–821. [Google Scholar] [CrossRef]
Target fpeak (Hz) | 20 | 40 | 80 | 160 | 320 | 640 | 1280 | 2560 | 5120 | 10,240 | 20,480 |
---|---|---|---|---|---|---|---|---|---|---|---|
Iω (nA) | 0.5 | 0.5 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 16 | 16 |
C1/2, C2/2 (pF) 2 | 62.36 | 31.13 | 30.54 | 15.22 | 14.81 | 7.35 | 7.09 | 3.49 | 3.34 | 3.16 | 1.53 |
Power (nW) 3 | 1.25–3.75 | 1.25–3.75 | 2.25–4.75 | 2.25–4.75 | 4.25–6.75 | 4.25–6.75 | 8.25–10.75 | 8.25–10.75 | 16.25–18.75 | 32.25–34.75 | 32.25–34.75 |
Obtained fpeak (Hz) 3 | 18.52–19.88 | 38.16–40.95 | 74.67–80.47 | 157.15–159.7 | 298.2–319.4 | 595.5–639.3 | 1192–1276 | 2399–2568 | 4801–5121 | 9547–10,230 | 19,050–20,450 |
Parameter | This Work (Simulated) | [15] (Measured) | [16] (Measured) | [17] (Measured) | [18] (Measured) |
---|---|---|---|---|---|
Technology | 0.18 µm CMOS | 0.35 µm CMOS | 0.35 µm CMOS | 1.5 µm BiCMOS | 0.18 µm CMOS |
Channel count | 11 | 64×2 | 1 | 16 | 64 × 2 |
Supply voltage | 0.5 V | 3.3 V | 3.3 V | 2.8 V | 0.5 V |
Power consumption per single filter | 1.25–34.75 nW | NA | 13–20 µW 1 | 112 nW–5.4 µW | 0.13–100 nW 2 |
Filter type | OTA-C | OTA-C | Floating active inductors | OTA-C | Source follower based |
Signal-to-noise ratio | 68 dB @1% THD | 36 dB 52 dB 3 | 17–27 dB for HQ 24–32 dB for LQ 4 @5% THD | 57 dB IDR 5 | 40 dB for Q ≈ 10 55 dB for Q ≈ 1 @1% HD |
f0 tuning range | 20 Hz–20 kHz | 100 Hz–20 kHz | 31 Hz–8 kHz | 200 Hz–6 kHz | 8 Hz–20 kHz |
f0 matching (1σ) | ±1% | ±6% | NA | NA | ±3.3% |
Q tuning range | 2–40 | NA | 2–19 | 1–10 | 1.3–39 |
Q matching (1σ) | ±1% | ±27% for Q = 1.5 | NA | NA | ±15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jendernalik, W.; Jakusz, J.; Blakiewicz, G. Low-Voltage Low-Power Filters with Independent ω0 and Q Tuning for Electronic Cochlea Applications. Electronics 2022, 11, 534. https://doi.org/10.3390/electronics11040534
Jendernalik W, Jakusz J, Blakiewicz G. Low-Voltage Low-Power Filters with Independent ω0 and Q Tuning for Electronic Cochlea Applications. Electronics. 2022; 11(4):534. https://doi.org/10.3390/electronics11040534
Chicago/Turabian StyleJendernalik, Waldemar, Jacek Jakusz, and Grzegorz Blakiewicz. 2022. "Low-Voltage Low-Power Filters with Independent ω0 and Q Tuning for Electronic Cochlea Applications" Electronics 11, no. 4: 534. https://doi.org/10.3390/electronics11040534
APA StyleJendernalik, W., Jakusz, J., & Blakiewicz, G. (2022). Low-Voltage Low-Power Filters with Independent ω0 and Q Tuning for Electronic Cochlea Applications. Electronics, 11(4), 534. https://doi.org/10.3390/electronics11040534