# Simple, Fast, and Accurate Broadband Complex Permittivity Characterization Algorithm: Methodology and Experimental Validation from 140 GHz up to 220 GHz

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Theories and Algorithms

#### 2.1. Circuit Theory of the Sensing Device

#### 2.2. Characterization Algorithm

## 3. Device Fabrication and Measurements

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

MUT | material under test |

TL | transmission line |

CPW | coplanar waveguide |

VNA | vector network analyzer |

p.u.l | per unit length |

GSG | signal-ground-signal |

TRL | thru-reflect-line |

DI | de-ionized |

FEM | finite element method |

## References

- Yeo, J.; Lee, J.I. Slot-loaded microstrip patch sensor antenna for high-sensitivity permittivity characterization. Electronics
**2019**, 8, 502. [Google Scholar] [CrossRef] [Green Version] - Sethi, W.; Ibrahim, A.; Issa, K.; Albishi, A.; Alshebeili, S. A new approach to determining liquid concentration using multiband annular ring microwave sensor and polarity correlator. Electronics
**2020**, 9, 1616. [Google Scholar] [CrossRef] - Lee, J.S.; Lee, G.H.; Mohyuddin, W.; Choi, H.C.; Kim, K.W. Design of an ultra-wideband microstrip-to-slotline transition on low-permittivity substrate. Electronics
**2020**, 9, 1329. [Google Scholar] [CrossRef] - Kawarasaki, M.; Tanabe, K.; Terasaki, I.; Fujii, Y.; Taniguchi, H. Intrinsic enhancement of dielectric permittivity in (Nb + In) co-doped TiO
_{2}single crystals. Sci. Rep.**2017**, 7, 5351. [Google Scholar] [CrossRef] [Green Version] - Chang, T.; Zhang, X.; Zhang, X.; Cui, H.L. Accurate determination of dielectric permittivity of polymers from 75 GHz to 1.6 THz using both S-parameters and transmission spectroscopy. Appl. Opt.
**2017**, 56, 3287–3292. [Google Scholar] [CrossRef] - Bao, X.; Ocket, I.; Bao, J.; Liu, Z.; Puers, B.; Schreurs, D.M.P.; Nauwelaers, B. Modeling of coplanar interdigital capacitor for microwave microfluidic application. IEEE Trans. Microw. Theory Tech.
**2019**, 67, 2674–2683. [Google Scholar] [CrossRef] - Ivanov, A.; Agliullin, T.; Laneve, D.; Portosi, V.; Vorobev, A.; Nigmatullin, R.R.; Nasybullin, A.; Morozov, O.; Prudenzano, F.; D’Orazio, A.; et al. Design and characterization of a microwave planar sensor for dielectric assessment of vegetable oils. Electronics
**2019**, 8, 1030. [Google Scholar] [CrossRef] [Green Version] - Itami, G.; Sakai, O.; Harada, Y. Two-dimensional imaging of permittivity distribution by an activated meta-structure with a functional scanning defect. Electronics
**2019**, 8, 239. [Google Scholar] [CrossRef] [Green Version] - Chao, H.W.; Chen, H.H.; Chang, T.H. Measuring the complex permittivities of plastics in irregular shapes. Polymers
**2021**, 13, 2658. [Google Scholar] [CrossRef] - Ermilova, E.; Bier, F.F.; Hölzel, R. Dielectric measurements of aqueous DNA solutions up to 110 GHz. Phys. Chem. Chem. Phys.
**2014**, 16, 11256–11264. [Google Scholar] [CrossRef] - Bao, X.; Zhang, M.; Ocket, I.; Liu, Z.; Nauwelaers, B.; Schreurs, D. Impact of measurement uncertainty on modeling of dielectric relaxation in aqueous solutions. IEEE Trans. Microw. Theory Tech.
**2021**, 69, 4082–4092. [Google Scholar] [CrossRef] - Wang, H.C.; Zyuzin, A.; Mamishev, A.V. Measurement of coating thickness and loading using concentric fringing electric field sensors. IEEE Sens. J.
**2013**, 14, 68–78. [Google Scholar] [CrossRef] - Ma, J.; Wu, Z.; Xia, Q.; Wang, S.; Tang, J.; Wang, K.; Guo, L.; Jiang, H.; Zeng, B.; Gong, Y. Complex permittivity measurement of high-Loss biological material with improved cavity perturbation method in the range of 26.5–40 GHz. Electronics
**2020**, 9, 1200. [Google Scholar] [CrossRef] - Rocco, G.M.; Barmuta, P.; Bao, X.; Schreurs, D.; Bozzi, M. Efficient approach for dielectric permittivity measurements of liquids adopting a 3D-printed cavity resonator. Microw. Opt. Technol. Lett.
**2021**, 63, 2797–2802. [Google Scholar] [CrossRef] - Tiwari, N.; Jha, A.; Singh, S.; Akhter, Z.; Varshney, P.; Akhtar, M.J. Generalized multimode SIW cavity-based sensor for retrieval of complex permittivity of materials. IEEE Trans. Microw. Theory Tech.
**2018**, 66, 3063–3072. [Google Scholar] [CrossRef] - Bao, X.; Zhang, M.; Ocket, I.; Bao, J.; Kil, D.; Liu, Z.; Puers, R.; Schreurs, D.; Nauwelaers, B. Integration of interdigitated electrodes in split-ring resonator for detecting liquid mixtures. IEEE Trans. Microw. Theory Tech.
**2020**, 68, 2080–2089. [Google Scholar] [CrossRef] - Raveendran, A.; Raman, S. Complex permittivity extraction of planar dielectrics using a noninvasive microwave transmission line resonant technique. IEEE Trans. Instrum. Meas.
**2021**, 70, 1–8. [Google Scholar] [CrossRef] - Jiang, Q.; Yu, Y.; Zhao, Y.; Zhang, Y.; Liu, L.; Li, Z. Ultra-compact effective localized surface plasmonic sensor for permittivity measurement of aqueous ethanol solution with high sensitivity. IEEE Trans. Instrum. Meas.
**2021**, 70, 1–9. [Google Scholar] [CrossRef] - Crupi, G.; Bao, X.; Babarinde, O.J.; Schreurs, D.M.P.; Nauwelaers, B. Biosensor using a one-port interdigital capacitor: A resonance-based investigation of the permittivity sensitivity for microfluidic broadband bioelectronics applications. Electronics
**2020**, 9, 340. [Google Scholar] [CrossRef] [Green Version] - Shim, J.Y.; Chung, J.Y. Complex permittivity measurement of artificial tissue emulating material using open-ended coaxial probe. IEEE Sens. J.
**2020**, 20, 4688–4693. [Google Scholar] [CrossRef] - Casacuberta, P.; Muñoz-Enano, J.; Vélez, P.; Su, L.; Gil, M.; Martín, F. Highly sensitive reflective-mode defect detectors and dielectric constant sensors based on open-ended stepped-impedance transmission lines. Sensors
**2020**, 20, 6236. [Google Scholar] [CrossRef] [PubMed] - Gonçalves, F.J.F.; Pinto, A.G.; Mesquita, R.C.; Silva, E.J.; Brancaccio, A. Free-space materials characterization by reflection and transmission measurements using frequency-by-frequency and multi-frequency algorithms. Electronics
**2018**, 7, 260. [Google Scholar] [CrossRef] [Green Version] - Ghodgaonkar, D.; Varadan, V.; Varadan, V.K. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans. Instrum. Meas.
**1990**, 39, 387–394. [Google Scholar] [CrossRef] - Janezic, M.D.; Williams, D.F. Permittivity characterization from transmission-line measurement. In Proceedings of the 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, 8–13 June 1997; Volume 3, pp. 1343–1346. [Google Scholar]
- Janezic, M.D.; Williams, D.F.; Blaschke, V.; Karamcheti, A.; Chang, C.S. Permittivity characterization of low-k thin films from transmission-line measurements. IEEE Trans. Microw. Theory Tech.
**2003**, 51, 132–136. [Google Scholar] [CrossRef] - Grenier, K.; Dubuc, D.; Poleni, P.E.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H. Integrated broadband microwave and microfluidic sensor dedicated to bioengineering. IEEE Trans. Microw. Theory Tech.
**2009**, 57, 3246–3253. [Google Scholar] [CrossRef] - Bao, X.; Ocket, I.; Bao, J.; Doijen, J.; Zheng, J.; Kil, D.; Liu, Z.; Puers, B.; Schreurs, D.; Nauwelaers, B. Broadband dielectric spectroscopy of cell cultures. IEEE Trans. Microw. Theory Tech.
**2018**, 66, 5750–5759. [Google Scholar] [CrossRef] - Booth, J.C.; Orloff, N.D.; Mateu, J.; Janezic, M.; Rinehart, M.; Beall, J.A. Quantitative permittivity measurements of nanoliter liquid volumes in microfluidic channels to 40 GHz. IEEE Trans. Instrum. Meas.
**2010**, 59, 3279–3288. [Google Scholar] [CrossRef] - Costa, F.; Borgese, M.; Degiorgi, M.; Monorchio, A. Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices. Electronics
**2017**, 6, 95. [Google Scholar] [CrossRef] [Green Version] - Hasar, U.C.; Westgate, C.R. A broadband and stable method for unique complex permittivity determination of low-loss materials. IEEE Trans. Microw. Theory Tech.
**2009**, 57, 471–477. [Google Scholar] [CrossRef] - Minteer, S.D. Microfluidic Techniques: Reviews and Protocols; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 321. [Google Scholar]
- Stojanović, G.; Paroški, M.; Samardžić, N.; Radovanović, M.; Krstić, D. Microfluidics-based four fundamental electronic circuit elements resistor, inductor, capacitor and memristor. Electronics
**2019**, 8, 960. [Google Scholar] [CrossRef] [Green Version] - Liu, S.; Orloff, N.D.; Little, C.A.; Zhao, W.; Booth, J.C.; Williams, D.F.; Ocket, I.; Schreurs, D.M.P.; Nauwelaers, B. Hybrid characterization of nanolitre dielectric fluids in a single microfluidic channel up to 110 GHz. IEEE Trans. Microw. Theory Tech.
**2017**, 65, 5063–5073. [Google Scholar] [CrossRef] - Lee, M.Q.; Nam, S. An accurate broadband measurement of substrate dielectric constant. IEEE Microw. Guid. Wave Lett.
**1996**, 6, 168–170. [Google Scholar] - Bao, X.; Liu, S.; Ocket, I.; Bao, J.; Schreurs, D.; Zhang, S.; Cheng, C.; Feng, K.; Nauwelaers, B. A general line–line method for dielectric material characterization using conductors with the same cross-sectional geometry. IEEE Microw. Wirel. Components Lett.
**2018**, 28, 356–358. [Google Scholar] [CrossRef] - Farcich, N.J.; Salonen, J.; Asbeck, P.M. Single-length method used to determine the dielectric constant of polydimethylsiloxane. IEEE Trans. Microw. Theory Tech.
**2008**, 56, 2963–2971. [Google Scholar] [CrossRef] - Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P. SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng.
**1997**, 7, 121. [Google Scholar] [CrossRef] - Marks, R.B.; Williams, D.F. A general waveguide circuit theory. J. Res. Natl. Inst. Stand. Technol.
**1992**, 97, 533–562. [Google Scholar] [CrossRef] - Williams, D.F.; Marks, R.B. Accurate transmission line characterization. IEEE Microw. Guid. Wave Lett.
**1993**, 3, 247–249. [Google Scholar] [CrossRef] - Bao, X.; Bao, J.; Ocket, I.; Liu, S.; Schreurs, D.; Kil, D.; Liu, Z.; Zhang, M.; Puers, R.; Nauwelaers, B. A simplified dielectric material characterization algorithm for both liquids and solids. IEEE Trans. Electromagn. Compat.
**2018**, 61, 1639–1646. [Google Scholar] [CrossRef] - Marks, R.B. A multiline method of network analyzer calibration. IEEE Trans. Microw. Theory Tech.
**1991**, 39, 1205–1215. [Google Scholar] [CrossRef] [Green Version] - Williams, D. StatistiCAL Software Package; National Institute of Standards and Technology: Gaithersburg, MA, USA.
- Ellison, W. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C. J. Phys. Chem. Ref. Data
**2007**, 36, 1–18. [Google Scholar] [CrossRef] - Bao, X.; Liu, S.; Ocket, I.; Bao, J.; Kil, D.; Zhang, M.; Puers, B.; Schreurs, D.; Nauwelaers, B. A multiline multimaterial calibration method for liquid characterization. IEEE Microw. Wirel. Compon. Lett.
**2018**, 28, 732–734. [Google Scholar] [CrossRef]

**Figure 1.**A transmission-line-based sensing device, with the material under test being contained in a microfluidic channel formed by SU-8 polymer walls.

**Figure 3.**On-wafer measurement setup, including the probe station, the microfluidic sensing chip, and the multiline-TRL calibration standards.

**Figure 4.**The extracted real part (

**a**) and imaginary part (

**b**) complex permittivity of de-ionized water within the broadband millimeter wave frequency range between 140 and 220 GHz, using the proposed fast and simple characterization algorithm.

**Figure 5.**Frequency dependence of the extracted per-unit-length resistance R (

**a**) and the extracted per-unit-length inductance L (

**b**) within the frequency range from 140 to 220 GHz.

**Table 1.**Coefficient values of the Double-Debye function for calculating the frequency- and temperature-dependent complex permittivity of water.

Coefficient | Value | Coefficient | Value | Coefficient | Value |
---|---|---|---|---|---|

${a}_{1}$ | 79.42385 | ${a}_{2}$ | 3.611638 | ${t}_{c}$ | 132.6248 |

${b}_{1}$ | 0.004319728 | ${b}_{2}$ | 0.01231281 | ||

${c}_{1}$ | 1.352835 × ${10}^{-13}$ | ${c}_{2}$ | 1.005472 × ${10}^{-14}$ | ||

${d}_{1}$ | 653.3092 | ${d}_{2}$ | 743.0733 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bao, X.; Wang, L.; Wang, Z.; Zhang, J.; Zhang, M.; Crupi, G.; Zhang, A.
Simple, Fast, and Accurate Broadband Complex Permittivity Characterization Algorithm: Methodology and Experimental Validation from 140 GHz up to 220 GHz. *Electronics* **2022**, *11*, 366.
https://doi.org/10.3390/electronics11030366

**AMA Style**

Bao X, Wang L, Wang Z, Zhang J, Zhang M, Crupi G, Zhang A.
Simple, Fast, and Accurate Broadband Complex Permittivity Characterization Algorithm: Methodology and Experimental Validation from 140 GHz up to 220 GHz. *Electronics*. 2022; 11(3):366.
https://doi.org/10.3390/electronics11030366

**Chicago/Turabian Style**

Bao, Xiue, Li Wang, Zeyu Wang, Jiabei Zhang, Meng Zhang, Giovanni Crupi, and Anxue Zhang.
2022. "Simple, Fast, and Accurate Broadband Complex Permittivity Characterization Algorithm: Methodology and Experimental Validation from 140 GHz up to 220 GHz" *Electronics* 11, no. 3: 366.
https://doi.org/10.3390/electronics11030366